↓ Skip to main content

Bioinformatics analysis of paravertebral muscles atrophy in adult degenerative scoliosis

Overview of attention for article published in Journal of Muscle Research and Cell Motility, May 2023
Altmetric Badge

Readers on

mendeley
2 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Bioinformatics analysis of paravertebral muscles atrophy in adult degenerative scoliosis
Published in
Journal of Muscle Research and Cell Motility, May 2023
DOI 10.1007/s10974-023-09650-8
Pubmed ID
Authors

Zhigang Rong, Zhong Yang, Chengmin Zhang, Rongxi Pu, Can Chen, Jianzhong Xu, Fei Luo

Abstract

Paravertebral muscles (PVM) act as one of the major dynamic factors to maintain human upright activities and play a remarkable role in maintaining the balance of the trunk. Adult degenerative scoliosis (ADS) has become one of the important causes of disability in the elderly population owing to the changes in spinal biomechanics, atrophy and degeneration of PVM, and imbalance of the spine. Previously, many studies focused on the physical evaluation of PVM degeneration. However, the molecular biological changes are still not completely known. In this study, we established a rat model of scoliosis and performed the proteomic analysis of the PVM of ADS. The results showed that the degree of atrophy, muscle fat deposition, and fibrosis of the PVM of rats positively correlated with the angle of scoliosis. The proteomic results showed that 177 differentially expressed proteins were present in the ADS group, which included 105 upregulated proteins and 72 downregulated proteins compared with the PVM in individuals without spinal deformities. Through the construction of a protein-protein interaction network, 18 core differentially expressed proteins were obtained, which included fibrinogen beta chain, apolipoprotein E, fibrinogen gamma chain, thrombospondin-1, integrin alpha-6, fibronectin-1, platelet factor 4, coagulation factor XIII A chain, ras-related protein Rap-1b, platelet endothelial cell adhesion molecule 1, complement C1q subcomponent subunit A, cathepsin G, myeloperoxidase, von Willebrand factor, integrin beta-1, integrin alpha-1, leukocyte surface antigen CD47, and complement C1q subcomponent subunit B. Further analysis of the Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) and immunofluorescence showed that the neutrophil extracellular traps (NETs) formation signaling pathway plays a major role in the pathogenesis of PVM degeneration in ADS. The results of the present study preliminarily laid the molecular biological foundation of PVM atrophy in ADS, which will provide a new therapeutic target for alleviating PVM atrophy and decreasing the occurrence of scoliosis.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 2 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 2 100%

Demographic breakdown

Readers by professional status Count As %
Unspecified 1 50%
Unknown 1 50%
Readers by discipline Count As %
Unspecified 1 50%
Unknown 1 50%