↓ Skip to main content

Waterfowl show spatiotemporal trends in influenza A H5 and H7 infections but limited taxonomic variation

Overview of attention for article published in Ecological Applications, August 2023
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (78th percentile)
  • Good Attention Score compared to outputs of the same age and source (79th percentile)

Mentioned by

twitter
14 X users

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
17 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Waterfowl show spatiotemporal trends in influenza A H5 and H7 infections but limited taxonomic variation
Published in
Ecological Applications, August 2023
DOI 10.1002/eap.2906
Pubmed ID
Authors

Cody M. Kent, Sarah N. Bevins, Jennifer M. Mullinax, Jeffery D. Sullivan, Diann J. Prosser

Abstract

Influenza A viruses in wild birds pose threats to the poultry industry, wild birds, and human health under certain conditions. Of particular importance are wild waterfowl, which are the primary reservoir of low pathogenicity influenza viruses that ultimately cause high pathogenicity outbreaks in poultry farms. Despite much work on the drivers of influenza A virus prevalence, the underlying viral subtype dynamics are still mostly unexplored. Nevertheless, understanding these dynamics, particularly for the agriculturally significant H5 and H7 subtypes, is important for mitigating the risk of outbreaks in domestic poultry farms. Here, using an expansive surveillance database, we take a large-scale look at the spatial, temporal, and taxonomic drivers in the prevalence of these two subtypes among influenza A positive wild waterfowl. We document spatiotemporal trends that are consistent with past work, particularly an uptick in H5 viruses in late autumn and H7 viruses in spring. Interestingly, despite large species differences in temporal trends in overall influenza A virus prevalence, we document only modest differences in the relative abundance of these two subtypes and little, if any, temporal differences among species. As such, it appears that differences in species' phenology, physiology, and behaviors that influence overall susceptibility to influenza A viruses play a much lesser role in relative susceptibility to different subtypes. Instead, species likely freely pass viruses among each other regardless of subtype. Importantly, despite the similarities among species documented here, individual species still may play important roles in moving viruses across large geographic areas or sustaining local outbreaks through their different migratory behaviors. This article is protected by copyright. All rights reserved.

X Demographics

X Demographics

The data shown below were collected from the profiles of 14 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Unspecified 7 41%
Student > Ph. D. Student 2 12%
Researcher 2 12%
Student > Bachelor 1 6%
Professor > Associate Professor 1 6%
Other 0 0%
Unknown 4 24%
Readers by discipline Count As %
Unspecified 7 41%
Agricultural and Biological Sciences 4 24%
Veterinary Science and Veterinary Medicine 1 6%
Environmental Science 1 6%
Medicine and Dentistry 1 6%
Other 0 0%
Unknown 3 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 October 2023.
All research outputs
#4,706,844
of 25,081,505 outputs
Outputs from Ecological Applications
#1,128
of 3,351 outputs
Outputs of similar age
#74,952
of 341,845 outputs
Outputs of similar age from Ecological Applications
#6
of 24 outputs
Altmetric has tracked 25,081,505 research outputs across all sources so far. Compared to these this one has done well and is in the 81st percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,351 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 16.0. This one has gotten more attention than average, scoring higher than 66% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 341,845 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 78% of its contemporaries.
We're also able to compare this research output to 24 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 79% of its contemporaries.