↓ Skip to main content

High-efficiency genetic engineering toolkit for virus based on lambda red-mediated recombination

Overview of attention for article published in Biotechnology Techniques, August 2023
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Readers on

mendeley
3 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
High-efficiency genetic engineering toolkit for virus based on lambda red-mediated recombination
Published in
Biotechnology Techniques, August 2023
DOI 10.1007/s10529-023-03412-9
Pubmed ID
Authors

Jing Yi, Maifei Zhang, Lin Zhu, Changzhi Xu, Binglin Li, Panpan Wu, Hang Wu, Buchang Zhang

Abstract

Viruses, such as Ebola virus (EBOV), evolve rapidly and threaten the human health. There is a great demand to exploit efficient gene-editing techniques for the identification of virus to probe virulence mechanism for drug development. Based on lambda Red recombination in Escherichia coli (E. coli), counter-selection, and in vitro annealing, a high-efficiency genetic method was utilized here for precisely engineering viruses. EBOV trVLPs assay and dual luciferase reporter assay were used to further test the effect of mutations on virus replication. Considering the significance of matrix protein VP24 in EBOV replication, the types of mutations within vp24, including several single-base substitutions, one double-base substitution, two seamless deletions, and one targeted insertion, were generated on the multi-copy plasmid of E. coli. Further, the length of the homology arms for recombination and in vitro annealing, and the amount of DNA cassettes and linear plasmids were optimized to create a more elaborate and cost-efficient protocol than original approach. The effects of VP24 mutations on the expression of a reporter gene (luciferase) from the EBOV minigenome were determined, and results indicated that mutations of key sites within VP24 have significant impacts on EBOV replication. This precise mutagenesis method will facilitate effective and simple editing of viral genes in E. coli.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 3 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 3 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 2 67%
Unknown 1 33%
Readers by discipline Count As %
Philosophy 1 33%
Unknown 2 67%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 August 2023.
All research outputs
#16,737,737
of 25,394,764 outputs
Outputs from Biotechnology Techniques
#2,182
of 2,763 outputs
Outputs of similar age
#189,548
of 358,370 outputs
Outputs of similar age from Biotechnology Techniques
#2
of 6 outputs
Altmetric has tracked 25,394,764 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,763 research outputs from this source. They receive a mean Attention Score of 3.9. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 358,370 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 6 others from the same source and published within six weeks on either side of this one. This one has scored higher than 4 of them.