↓ Skip to main content

Adaptation to pollination by fungus gnats underlies the evolution of pollination syndrome in the genus Euonymus

Overview of attention for article published in Annals of Botany, August 2023
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • Among the highest-scoring outputs from this source (#14 of 3,769)
  • High Attention Score compared to outputs of the same age (98th percentile)
  • High Attention Score compared to outputs of the same age and source (98th percentile)

Mentioned by

news
3 news outlets
blogs
3 blogs
twitter
144 X users

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
9 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Adaptation to pollination by fungus gnats underlies the evolution of pollination syndrome in the genus Euonymus
Published in
Annals of Botany, August 2023
DOI 10.1093/aob/mcad081
Pubmed ID
Authors

Ko Mochizuki, Tomoko Okamoto, Kai-Hsiu Chen, Chun-Neng Wang, Matthew Evans, Andrea T Kramer, Atsushi Kawakita

Abstract

Dipteran insects are known pollinators of many angiosperms, but knowledge on how flies affect floral evolution is relatively scarce. Some plants pollinated by fungus gnats share a unique set of floral characters (dark red display, flat shape and short stamens), which differs from any known pollination syndromes. We tested whether this set of floral characters is a pollination syndrome associated with pollination by fungus gnats, using the genus Euonymus as a model. The pollinator and floral colour, morphology and scent profile were investigated for ten Euonymus species and Tripterygium regelii as an outgroup. The flower colour was evaluated using bee and fly colour vision models. The evolutionary association between fungus gnat pollination and each plant character was tested using a phylogenetically independent contrast. The ancestral state reconstruction was performed on flower colour, which is associated with fungus gnat pollination, to infer the evolution of pollination in the genus Euonymus. The red-flowered Euonymus species were pollinated predominantly by fungus gnats, whereas the white-flowered species were pollinated by bees, beetles and brachyceran flies. The colour vision analysis suggested that red and white flowers are perceived as different colours by both bees and flies. The floral scents of the fungus gnat-pollinated species were characterized by acetoin, which made up >90 % of the total scent in three species. Phylogenetically independent contrast showed that the evolution of fungus gnat pollination is associated with acquisition of red flowers, short stamens and acetoin emission. Our results suggest that the observed combination of floral characters is a pollination syndrome associated with the parallel evolution of pollination by fungus gnats. Although the role of the red floral display and acetoin in pollinator attraction remains to be elucidated, our finding underscores the importance of fungus gnats as potential contributors to floral diversification.

X Demographics

X Demographics

The data shown below were collected from the profiles of 144 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 33%
Researcher 2 22%
Student > Bachelor 1 11%
Student > Ph. D. Student 1 11%
Other 1 11%
Other 0 0%
Unknown 1 11%
Readers by discipline Count As %
Agricultural and Biological Sciences 5 56%
Environmental Science 1 11%
Biochemistry, Genetics and Molecular Biology 1 11%
Neuroscience 1 11%
Unknown 1 11%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 122. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 January 2024.
All research outputs
#349,477
of 25,844,815 outputs
Outputs from Annals of Botany
#14
of 3,769 outputs
Outputs of similar age
#6,651
of 359,525 outputs
Outputs of similar age from Annals of Botany
#1
of 58 outputs
Altmetric has tracked 25,844,815 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 98th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,769 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.2. This one has done particularly well, scoring higher than 99% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 359,525 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 98% of its contemporaries.
We're also able to compare this research output to 58 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 98% of its contemporaries.