↓ Skip to main content

Flexible parametric methods for calculating life expectancy in small populations

Overview of attention for article published in Population Health Metrics, September 2023
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (83rd percentile)

Mentioned by

twitter
12 X users

Readers on

mendeley
9 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Flexible parametric methods for calculating life expectancy in small populations
Published in
Population Health Metrics, September 2023
DOI 10.1186/s12963-023-00313-x
Pubmed ID
Authors

Freya Tyrer, Yogini V. Chudasama, Paul C. Lambert, Mark J. Rutherford

Abstract

Life expectancy is a simple measure of assessing health differences between two or more populations but current life expectancy calculations are not reliable for small populations. A potential solution to this is to borrow strength from larger populations from the same source, but this has not formally been investigated. Using data on 451,222 individuals from the Clinical Practice Research Datalink on the presence/absence of intellectual disability and type 2 diabetes mellitus, we compared stratified and combined flexible parametric models, and Chiang's methods, for calculating life expectancy. Confidence intervals were calculated using the Delta method, Chiang's adjusted life table approach and bootstrapping. The flexible parametric models allowed calculation of life expectancy by exact age and beyond traditional life expectancy age thresholds. The combined model that fit age interaction effects as a spline term provided less bias and greater statistical precision for small covariate subgroups by borrowing strength from the larger subgroups. However, careful consideration of the distribution of events in the smallest group was needed. Life expectancy is a simple measure to compare health differences between populations. The use of combined flexible parametric methods to calculate life expectancy in small samples has shown promising results by allowing life expectancy to be modelled by exact age, greater statistical precision, less bias and prediction of different covariate patterns without stratification. We recommend further investigation of their application for both policymakers and researchers.

X Demographics

X Demographics

The data shown below were collected from the profiles of 12 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Unspecified 2 22%
Student > Bachelor 1 11%
Lecturer 1 11%
Other 1 11%
Student > Postgraduate 1 11%
Other 0 0%
Unknown 3 33%
Readers by discipline Count As %
Unspecified 2 22%
Nursing and Health Professions 1 11%
Computer Science 1 11%
Medicine and Dentistry 1 11%
Unknown 4 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 September 2023.
All research outputs
#4,057,287
of 24,451,685 outputs
Outputs from Population Health Metrics
#107
of 404 outputs
Outputs of similar age
#30,232
of 179,296 outputs
Outputs of similar age from Population Health Metrics
#1
of 2 outputs
Altmetric has tracked 24,451,685 research outputs across all sources so far. Compared to these this one has done well and is in the 83rd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 404 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.1. This one has gotten more attention than average, scoring higher than 73% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 179,296 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 83% of its contemporaries.
We're also able to compare this research output to 2 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them