↓ Skip to main content

Integrating Liver-Chip data into pharmaceutical decision-making processes

Overview of attention for article published in Expert Opinion on Drug Discovery, September 2023
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • One of the highest-scoring outputs from this source (#8 of 1,017)
  • High Attention Score compared to outputs of the same age (96th percentile)
  • High Attention Score compared to outputs of the same age and source (99th percentile)

Mentioned by

news
8 news outlets
twitter
1 X user

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Integrating Liver-Chip data into pharmaceutical decision-making processes
Published in
Expert Opinion on Drug Discovery, September 2023
DOI 10.1080/17460441.2023.2255127
Pubmed ID
Authors

Daniel Levner, Lorna Ewart

Abstract

Drug-induced liver injury (DILI) is a potentially lethal condition that heavily impacts the pharmaceutical industry, causing approximately 21% of drug withdrawals and 13% of clinical trial failures. Recent evidence suggests that the use of Liver-Chip technology in preclinical safety testing may significantly reduce DILI-related clinical trial failures and withdrawals. However, drug developers and regulators would benefit from guidance on the integration of Liver-Chip data into decision-making processes to facilitate the technology's adoption. This perspective builds on the findings of the performance assessment of the Emulate Liver-Chip in the context of DILI prediction and introduces two new decision-support frameworks: the first uses the Liver-Chip's quantitative output to elucidate DILI severity and enable more nuanced risk analysis; the second integrates Liver-Chip data with standard animal testing results to help assess whether to progress a candidate drug into clinical trials. There is now strong evidence that Liver-Chip technology could significantly reduce the incidence of DILI in drug development. As this is a patient safety issue, it is imperative that developers and regulators explore the incorporation of the technology. The frameworks presented enable the integration of the Liver-Chip into various stages of preclinical development in support of safety assessment.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Unspecified 3 21%
Student > Ph. D. Student 1 7%
Other 1 7%
Unknown 9 64%
Readers by discipline Count As %
Unspecified 3 21%
Pharmacology, Toxicology and Pharmaceutical Science 1 7%
Materials Science 1 7%
Unknown 9 64%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 61. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 September 2023.
All research outputs
#663,261
of 24,477,448 outputs
Outputs from Expert Opinion on Drug Discovery
#8
of 1,017 outputs
Outputs of similar age
#6,081
of 196,671 outputs
Outputs of similar age from Expert Opinion on Drug Discovery
#1
of 9 outputs
Altmetric has tracked 24,477,448 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 97th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,017 research outputs from this source. They receive a mean Attention Score of 4.5. This one has done particularly well, scoring higher than 99% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 196,671 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 96% of its contemporaries.
We're also able to compare this research output to 9 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them