↓ Skip to main content

Chromatin gatekeeper and modifier CHD proteins in development, and in autism and other neurological disorders

Overview of attention for article published in Psychiatric Genetics, October 2023
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (56th percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
11 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Chromatin gatekeeper and modifier CHD proteins in development, and in autism and other neurological disorders
Published in
Psychiatric Genetics, October 2023
DOI 10.1097/ypg.0000000000000353
Pubmed ID
Authors

Tahir Muhammad, Stephen F. Pastore, Katrina Good, Juan Ausió, John B. Vincent

Abstract

Chromatin, a protein-DNA complex, is a dynamic structure that stores genetic information within the nucleus and adapts to molecular/cellular changes in its structure, providing conditional access to the genetic machinery. ATP-dependent chromatin modifiers regulate access of transcription factors and RNA polymerases to DNA by either "opening" or "closing" the structure of chromatin, and its aberrant regulation leads to a variety of neurodevelopmental disorders. The chromodomain helicase DNA-binding (CHD) proteins are ATP-dependent chromatin modifiers involved in the organization of chromatin structure, act as gatekeepers of genomic access, and deposit histone variants required for gene regulation. In this review, we first discuss the structural and functional domains of the CHD proteins, and their binding sites, and phosphorylation, acetylation, and methylation sites. The conservation of important amino acids in SWItch/sucrose non-fermenting (SWI/SNF) domains, and their protein and mRNA tissue expression profiles are discussed. Next, we convey the important binding partners of CHD proteins, their protein complexes and activities, and their involvements in epigenetic regulation. We also show the ChIP-seq binding dynamics for CHD1, CHD2, CHD4, and CHD7 proteins at promoter regions of histone genes, as well as several genes that are critical for neurodevelopment. The role of CHD proteins in development is also discussed. Finally, this review provides information about CHD protein mutations reported in autism and neurodevelopmental disorders, and their pathogenicity. Overall, this review provides information on the progress of research into CHD proteins, their structural and functional domains, epigenetics, and their role in stem cell, development, and neurological disorders.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 11 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 11 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 45%
Student > Ph. D. Student 1 9%
Student > Master 1 9%
Unknown 4 36%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 45%
Agricultural and Biological Sciences 1 9%
Medicine and Dentistry 1 9%
Unknown 4 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 October 2023.
All research outputs
#15,184,741
of 25,394,764 outputs
Outputs from Psychiatric Genetics
#240
of 540 outputs
Outputs of similar age
#149,557
of 356,159 outputs
Outputs of similar age from Psychiatric Genetics
#1
of 3 outputs
Altmetric has tracked 25,394,764 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 540 research outputs from this source. They receive a mean Attention Score of 3.7. This one has gotten more attention than average, scoring higher than 54% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 356,159 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 56% of its contemporaries.
We're also able to compare this research output to 3 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them