↓ Skip to main content

Plant virus‐derived nanoparticles decorated with genetically encoded SARS‐CoV‐2 nanobodies display enhanced neutralizing activity

Overview of attention for article published in Plant Biotechnology Journal, November 2023
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • Among the highest-scoring outputs from this source (#21 of 2,257)
  • High Attention Score compared to outputs of the same age (98th percentile)
  • High Attention Score compared to outputs of the same age and source (98th percentile)

Mentioned by

news
20 news outlets
twitter
21 X users

Readers on

mendeley
5 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Plant virus‐derived nanoparticles decorated with genetically encoded SARS‐CoV‐2 nanobodies display enhanced neutralizing activity
Published in
Plant Biotechnology Journal, November 2023
DOI 10.1111/pbi.14230
Pubmed ID
Authors

Fernando Merwaiss, Enrique Lozano‐Sanchez, João Zulaica, Luciana Rusu, Marta Vazquez‐Vilar, Diego Orzáez, Guillermo Rodrigo, Ron Geller, José‐Antonio Daròs

Abstract

Viral nanoparticles (VNPs) are a new class of virus-based formulations that can be used as building blocks to implement a variety of functions of potential interest in biotechnology and nanomedicine. Viral coat proteins (CP) that exhibit self-assembly properties are particularly appropriate for displaying antigens and antibodies, by generating multivalent VNPs with therapeutic and diagnostic potential. Here, we developed genetically encoded multivalent VNPs derived from two filamentous plant viruses, potato virus X (PVX) and tobacco etch virus (TEV), which were efficiently and inexpensively produced in the biofactory Nicotiana benthamiana plant. PVX and TEV-derived VNPs were decorated with two different nanobodies recognizing two different regions of the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein. The addition of different picornavirus 2A ribosomal skipping peptides between the nanobody and the CP allowed for modulating the degree of VNP decoration. Nanobody-decorated VNPs purified from N. benthamiana tissues successfully recognized the RBD antigen in enzyme-linked immunosorbent assays and showed efficient neutralization activity against pseudoviruses carrying the Spike protein. Interestingly, multivalent PVX and TEV-derived VNPs exhibited a neutralizing activity approximately one order of magnitude higher than the corresponding nanobody in a dimeric format. These properties, combined with the ability to produce VNP cocktails in the same N. benthamiana plant based on synergistic infection of the parent PVX and TEV, make these green nanomaterials an attractive alternative to standard antibodies for multiple applications in diagnosis and therapeutics.

X Demographics

X Demographics

The data shown below were collected from the profiles of 21 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 5 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 5 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 2 40%
Student > Ph. D. Student 1 20%
Other 1 20%
Unknown 1 20%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 2 40%
Agricultural and Biological Sciences 2 40%
Unknown 1 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 162. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 February 2024.
All research outputs
#253,532
of 25,600,774 outputs
Outputs from Plant Biotechnology Journal
#21
of 2,257 outputs
Outputs of similar age
#4,052
of 350,679 outputs
Outputs of similar age from Plant Biotechnology Journal
#2
of 56 outputs
Altmetric has tracked 25,600,774 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 99th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,257 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.7. This one has done particularly well, scoring higher than 99% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 350,679 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 98% of its contemporaries.
We're also able to compare this research output to 56 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 98% of its contemporaries.