↓ Skip to main content

Ferroptosis Inducers as Promising Radiosensitizer Agents in Cancer Radiotherapy.

Overview of attention for article published in Current Radiopharmaceuticals, November 2023
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
1 X user

Readers on

mendeley
1 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Ferroptosis Inducers as Promising Radiosensitizer Agents in Cancer Radiotherapy.
Published in
Current Radiopharmaceuticals, November 2023
DOI 10.2174/0118744710262369231110065230
Pubmed ID
Authors

Fatemeh-Jalali Zefrei, Mohammd Shormij, Leila Dastranj, Maryam Alvandi, Zahra Shaghaghi, Soghra Farzipour, Nasim Zarei-Polgardani

Abstract

Radiotherapy (RT) failure has historically been mostly attributed to radioresistance. Ferroptosis is a type of controlled cell death that depends on iron and is caused by polyunsaturated fatty acid peroxidative damage. Utilizing a ferroptosis inducer may be a successful tactic for preventing tumor growth and radiotherapy-induced cell death. A regulated form of cell death known as ferroptosis is caused by the peroxidation of phospholipids containing polyunsaturated fatty acids in an iron-dependent manner (PUFA-PLs). The ferroptosis pathway has a number of important regulators. By regulating the formation of PUFA-PLs, the important lipid metabolism enzyme ACSL4 promotes ferroptosis, whereas SLC7A11 and (glutathione peroxidase 4) GPX4 prevent ferroptosis. In addition to introducing the ferroptosis inducer chemicals that have recently been demonstrated to have a radiosensitizer effect, this review highlights the function and methods by which ferroptosis contributes to RT-induced cell death and tumor suppression in vitro and in vivo.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 1 Mendeley reader of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 1 100%

Demographic breakdown

Readers by professional status Count As %
Unknown 1 100%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 1 100%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 December 2023.
All research outputs
#17,302,400
of 25,394,764 outputs
Outputs from Current Radiopharmaceuticals
#71
of 157 outputs
Outputs of similar age
#180,003
of 334,111 outputs
Outputs of similar age from Current Radiopharmaceuticals
#1
of 2 outputs
Altmetric has tracked 25,394,764 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 157 research outputs from this source. They receive a mean Attention Score of 3.1. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 334,111 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 2 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them