↓ Skip to main content

Role of Senataxin in Amyotrophic Lateral Sclerosis

Overview of attention for article published in Journal of Molecular Neuroscience, November 2023
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (85th percentile)
  • High Attention Score compared to outputs of the same age and source (85th percentile)

Mentioned by

news
1 news outlet
twitter
2 X users

Readers on

mendeley
9 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Role of Senataxin in Amyotrophic Lateral Sclerosis
Published in
Journal of Molecular Neuroscience, November 2023
DOI 10.1007/s12031-023-02169-0
Pubmed ID
Authors

Andrew Tsui, Valentina L. Kouznetsova, Santosh Kesari, Milan Fiala, Igor F. Tsigelny

Abstract

Amyotrophic lateral sclerosis (ALS) is a progressive, uncurable neurodegenerative disorder characterized by the degradation of motor neurons leading to muscle impairment, failure, and death. Senataxin, encoded by the SETX gene, is a human helicase protein whose mutations have been linked with ALS onset, particularly in its juvenile ALS4 form. Using senataxin's yeast homolog Sen1 as a model for study, it is suggested that senataxin's N-terminus interacts with RNA polymerase II, whilst its C-terminus engages in helicase activity. Senataxin is heavily involved in transcription regulation, termination, and R-loop resolution, enabled by recruitment and interactions with enzymes such as ubiquitin protein ligase SAN1 and ribonuclease H (RNase H). Senataxin also engages in DNA damage response (DDR), primarily interacting with the exosome subunit Rrp45. The Sen1 mutation E1597K, alongside the L389S and R2136H gain-of-function mutations to senataxin, is shown to cause negative structural and thus functional effects to the protein, thus contributing to a disruption in WT functions, motor neuron (MN) degeneration, and the manifestation of ALS clinical symptoms. This review corroborates and summarizes published papers concerning the structure and function of senataxin as well as the effects of their mutations in ALS pathology in order to compile current knowledge and provide a reference for future research. The findings compiled in this review are indicative of the experimental and therapeutic potential of senataxin and its mutations as a target in future ALS treatment/cure discovery, with some potential therapeutic routes also being discussed in the review.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 2 22%
Unspecified 1 11%
Student > Bachelor 1 11%
Researcher 1 11%
Unknown 4 44%
Readers by discipline Count As %
Neuroscience 2 22%
Unspecified 1 11%
Biochemistry, Genetics and Molecular Biology 1 11%
Medicine and Dentistry 1 11%
Unknown 4 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 November 2023.
All research outputs
#3,346,449
of 25,394,764 outputs
Outputs from Journal of Molecular Neuroscience
#89
of 1,643 outputs
Outputs of similar age
#49,149
of 351,040 outputs
Outputs of similar age from Journal of Molecular Neuroscience
#1
of 7 outputs
Altmetric has tracked 25,394,764 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,643 research outputs from this source. They receive a mean Attention Score of 3.9. This one has done particularly well, scoring higher than 93% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 351,040 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 85% of its contemporaries.
We're also able to compare this research output to 7 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them