↓ Skip to main content

A minimally invasive, field‐applicable CRISPR/Cas biosensor to aid in the detection of Pseudogymnoascus destructans, the causative fungal agent of white‐nose syndrome in bats

Overview of attention for article published in Molecular Ecology Resources, December 2023
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (71st percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
6 X users

Readers on

mendeley
2 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A minimally invasive, field‐applicable CRISPR/Cas biosensor to aid in the detection of Pseudogymnoascus destructans, the causative fungal agent of white‐nose syndrome in bats
Published in
Molecular Ecology Resources, December 2023
DOI 10.1111/1755-0998.13902
Pubmed ID
Authors

Adam A. Pérez, Abigail Tobin, John V. Stechly, Jason A. Ferrante, Margaret E. Hunter

Abstract

The accessibility to CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein) genetic tools has given rise to applications beyond site-directed genome editing for the detection of DNA and RNA. These tools include precise diagnostic detection of human disease pathogens, such as SARS-CoV-2 and Zika virus. Despite the technology being rapid and cost-effective, the use of CRISPR/Cas tools in the surveillance of the causative agents of wildlife diseases has not been prominent. This study presents the development of a minimally invasive, field-applicable and user-friendly CRISPR/Cas-based biosensor for the detection of Pseudogymnoascus destructans (Pd), the causative fungal agent of white-nose syndrome (WNS), an infectious disease that has killed more than five million bats in North America since its discovery in 2006. The biosensor assay combines a recombinase polymerase amplification (RPA) step followed by CRISPR/Cas12a nuclease cleavage to detect Pd DNA from bat dermal swab and guano samples. The biosensor had similar detection results when compared to quantitative PCR in distinguishing Pd-positive versus negative field samples. Although bat dermal swabs could be analysed with the biosensor without nucleic acid extraction, DNA extraction was needed when screening guano samples to overcome inhibitors. This assay can be applied to help with more rapid delineation of Pd-positive sites in the field to inform management decisions. With further optimization, this technology has broad translation potential to wildlife disease-associated pathogen detection and monitoring applications.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 2 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 2 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 1 50%
Student > Master 1 50%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 1 50%
Agricultural and Biological Sciences 1 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 January 2024.
All research outputs
#7,672,096
of 25,149,126 outputs
Outputs from Molecular Ecology Resources
#967
of 1,784 outputs
Outputs of similar age
#83,066
of 284,383 outputs
Outputs of similar age from Molecular Ecology Resources
#23
of 36 outputs
Altmetric has tracked 25,149,126 research outputs across all sources so far. This one has received more attention than most of these and is in the 69th percentile.
So far Altmetric has tracked 1,784 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.3. This one is in the 45th percentile – i.e., 45% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 284,383 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.
We're also able to compare this research output to 36 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.