↓ Skip to main content

M-FISH evaluation of chromosome aberrations to examine for historical exposure to ionising radiation due to participation at British nuclear test sites

Overview of attention for article published in Journal of Radiological Protection, January 2024
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (86th percentile)

Mentioned by

news
1 news outlet
twitter
1 X user

Readers on

mendeley
1 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
M-FISH evaluation of chromosome aberrations to examine for historical exposure to ionising radiation due to participation at British nuclear test sites
Published in
Journal of Radiological Protection, January 2024
DOI 10.1088/1361-6498/ad1743
Pubmed ID
Authors

Kirsty Josephine Lawrence, Martin Scholze, Jose Seixo, Frances Daley, Emily Al-Haddad, Kai Craenen, Clare Gillham, Christine Rake, Julian Peto, Rhona Anderson

Abstract

Veterans of the British nuclear testing programme represent a population of ex-military personnel who had the potential to be exposed to ionising radiation through their participation at nuclear testing sites in the 1950s and 1960s. In the intervening years, members of this population have raised concerns about the status of their health and that of their descendants, as a consequence. Radiation dose estimates based on film badge measurements of external dose recorded at the time of the tests suggest any exposure to be limited for the majority of personnel, however, only ∼20% of personnel were monitored and no measurement for internalised exposure are on record. Here, to in-part address families concerns, we assay for chromosomal evidence of historical radiation exposure in a group of aged nuclear test (NT) veterans, using multiplexin situhybridisation (M-FISH), for comparison with a matched group of veterans who were not present at NT sites. In total, we analysed 9379 and 7698 metaphase cells using M-FISH (24-colour karyotyping) from 48 NT and 38 control veteran samples, representing veteran servicemen from the army, Royal Airforce and Royal Navy. We observed stable and unstable simple- and complex-type chromosome aberrations in both NT and control veterans' samples, however find no significant difference in yield of any chromosome aberration type between the two cohorts. We do observe higher average frequencies of complex chromosome aberrations in a very small subset of veterans previously identified as having a higher potential for radiation exposure, which may be indicative of internalised contamination to long-lived radionuclides from radiation fallout. By utilising recently published whole genome sequence analysis data of a sub-set of the same family groups, we examined for but found no relationship between paternal chromosome aberration burden, germline mutation frequency and self-reported concerns of adverse health in family members, suggesting that the previously reported health issues by participants in this study are unlikely to be associated with historical radiation exposure. We did observe a small number of families, representing both control and NT cohorts, showing a relationship between paternal chromosome aberrations and germline mutation sub-types which should be explored in future studies. In conclusion, we find no cytogenetic evidence of historical radiation exposure in the cohort of nuclear veterans sampled here, offering reassurance that attendance at NTs sites by the veterans sampled here, was not associated with significant levels of exposure to radiation.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 1 Mendeley reader of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 1 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 1 100%
Readers by discipline Count As %
Agricultural and Biological Sciences 1 100%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 January 2024.
All research outputs
#3,693,959
of 25,152,132 outputs
Outputs from Journal of Radiological Protection
#101
of 634 outputs
Outputs of similar age
#23,996
of 174,395 outputs
Outputs of similar age from Journal of Radiological Protection
#1
of 3 outputs
Altmetric has tracked 25,152,132 research outputs across all sources so far. Compared to these this one has done well and is in the 85th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 634 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 16.0. This one has done well, scoring higher than 83% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 174,395 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 86% of its contemporaries.
We're also able to compare this research output to 3 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them