↓ Skip to main content

Microplastic fibres affect soil fungal communities depending on drought conditions with consequences for ecosystem functions

Overview of attention for article published in Environmental Microbiology, January 2024
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (95th percentile)
  • High Attention Score compared to outputs of the same age and source (95th percentile)

Mentioned by

news
5 news outlets
twitter
10 X users

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
8 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Microplastic fibres affect soil fungal communities depending on drought conditions with consequences for ecosystem functions
Published in
Environmental Microbiology, January 2024
DOI 10.1111/1462-2920.16549
Pubmed ID
Authors

Y. M. Lozano, J. F. Dueñas, C. Zordick, M. C. Rillig

Abstract

Microplastics affect soil functions depending on drought conditions. However, how their combined effect influences soil fungi and their linkages with ecosystem functions is still unknown. To address this, we used rhizosphere soil from a previous experiment in which we employed microplastic fibres addition and drought in a factorial design, and evaluated their effects on soil fungal communities. Microplastics decreased soil fungal richness under well-watered conditions, likely linked to microplastics leaching toxic substances into the soil, and microplastic effects on root fineness. Under drought, by contrast, microplastics increased pathogen and total fungal richness, likely related to microplastic positive effects on soil properties, such as water holding capacity, porosity or aggregation. Soil fungal richness was the attribute most affected by microplastics and drought. Microplastics altered the relationships between soil fungi and ecosystem functions to the point that many of them flipped from positive to negative or disappeared. The combined effect of microplastics and drought on fungal richness mitigated their individual negative effect (antagonism), suggesting that changes in soil water conditions may alter the action mode of microplastics in soil. Microplastic leaching of harmful substances can be mitigated under drought, while the improvement of soil properties by microplastics may alleviate such drought conditions.

X Demographics

X Demographics

The data shown below were collected from the profiles of 10 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 8 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 8 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 2 25%
Professor > Associate Professor 1 13%
Student > Master 1 13%
Lecturer 1 13%
Student > Doctoral Student 1 13%
Other 0 0%
Unknown 2 25%
Readers by discipline Count As %
Environmental Science 2 25%
Agricultural and Biological Sciences 2 25%
Biochemistry, Genetics and Molecular Biology 1 13%
Unknown 3 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 40. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 February 2024.
All research outputs
#1,023,463
of 25,381,384 outputs
Outputs from Environmental Microbiology
#99
of 4,602 outputs
Outputs of similar age
#12,827
of 299,061 outputs
Outputs of similar age from Environmental Microbiology
#3
of 41 outputs
Altmetric has tracked 25,381,384 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 95th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 4,602 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one has done particularly well, scoring higher than 97% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 299,061 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 95% of its contemporaries.
We're also able to compare this research output to 41 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 95% of its contemporaries.