↓ Skip to main content

An improved AMBER force field for α,α-dialkylated peptides: intrinsic and solvent-induced conformational preferences of model systems

Overview of attention for article published in Journal of the Chemical Society, Faraday Transactions, January 2013
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
An improved AMBER force field for α,α-dialkylated peptides: intrinsic and solvent-induced conformational preferences of model systems
Published in
Journal of the Chemical Society, Faraday Transactions, January 2013
DOI 10.1039/c3cp52721b
Pubmed ID
Authors

Sonja Grubišić, Giuseppe Brancato, Vincenzo Barone

Abstract

α,α-Dialkylated amino acid residues have acquired considerable importance as effective means for introducing backbone conformation constraints in synthetic peptides. The prototype of such a class of residues, namely Aib (α-aminoisobutyric acid), appears to play a dominant role in determining the preferred conformations of host proteins. We have recently introduced into the standard AMBER force field some new parameters, fitted against high-level quantum mechanical (QM) data, for simulating peptides containing α,α-dialkylated residues with cyclic side chains, such as TOAC (TOAC, 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid) and Ac6c (Ac6c = 1-aminocyclohexaneacetic acid). Here, we show that in order to accurately reproduce the observed conformational geometries and structural fluctuations of linear α,α-dialkylated peptides based on Aib, further improvements of the non-bonding and side chain torsion potential parameters have to be considered, due to the expected larger structural flexibility of linear residues with respect to cyclic ones. To this end, we present an extended set of parameters, which have been optimized by fitting the energies of multiple conformations of the Aib dipeptide analogue to corresponding QM calculations that properly account for dispersion interactions (B3LYP-D3). The quality, transferability and size-consistency of the proposed force field have been assessed both by considering a series of poly-Aib peptides, modeled at the same QM level, and by performing molecular dynamics simulations in solvents with high and low polarity. As a result, the present parameters allow one to reproduce with good reliability the available QM and experimental data, thus representing a notable improvement over current force field especially in the description of the α/310-helix conformational equilibria of α,α-dialkylated peptides with linear and cyclic side chains.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 27%
Student > Ph. D. Student 3 14%
Student > Bachelor 3 14%
Professor 2 9%
Lecturer 1 5%
Other 5 23%
Unknown 2 9%
Readers by discipline Count As %
Chemistry 14 64%
Agricultural and Biological Sciences 3 14%
Unspecified 1 5%
Biochemistry, Genetics and Molecular Biology 1 5%
Social Sciences 1 5%
Other 1 5%
Unknown 1 5%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 September 2013.
All research outputs
#20,970,494
of 25,756,911 outputs
Outputs from Journal of the Chemical Society, Faraday Transactions
#10,058
of 17,201 outputs
Outputs of similar age
#231,002
of 291,040 outputs
Outputs of similar age from Journal of the Chemical Society, Faraday Transactions
#256
of 326 outputs
Altmetric has tracked 25,756,911 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 17,201 research outputs from this source. They receive a mean Attention Score of 2.5. This one is in the 28th percentile – i.e., 28% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 291,040 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 10th percentile – i.e., 10% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 326 others from the same source and published within six weeks on either side of this one. This one is in the 9th percentile – i.e., 9% of its contemporaries scored the same or lower than it.