↓ Skip to main content

Structural and biological evaluation of lignin addition to simple and silver-doped hydroxyapatite thin films synthesized by matrix-assisted pulsed laser evaporation

Overview of attention for article published in Journal of Materials Science: Materials in Medicine, January 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (64th percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
52 Dimensions

Readers on

mendeley
60 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Structural and biological evaluation of lignin addition to simple and silver-doped hydroxyapatite thin films synthesized by matrix-assisted pulsed laser evaporation
Published in
Journal of Materials Science: Materials in Medicine, January 2015
DOI 10.1007/s10856-014-5333-y
Pubmed ID
Authors

A. Janković, S. Eraković, C. Ristoscu, N. Mihailescu (Serban), L. Duta, A. Visan, G. E. Stan, A. C. Popa, M. A. Husanu, C. R. Luculescu, V. V. Srdić, Dj. Janaćković, V. Mišković-Stanković, C. Bleotu, M. C. Chifiriuc, I. N. Mihailescu

Abstract

We report on thin film deposition by matrix-assisted pulsed laser evaporation of simple hydroxyapatite (HA) or silver (Ag) doped HA combined with the natural biopolymer organosolv lignin (Lig) (Ag:HA-Lig). Solid cryogenic target of aqueous dispersions of Ag:HA-Lig composite and its counterpart without silver (HA-Lig) were prepared for evaporation using a KrF* excimer laser source. The expulsed material was assembled onto TiO2/Ti substrata or silicon wafers and subjected to physical-chemical investigations. Smooth, uniform films adherent to substratum were observed. The chemical analyses confirmed the presence of the HA components, but also evidenced traces of Ag and Lig. Deposited HA was Ca deficient, which is indicative of a film with increased solubility. Recorded X-ray Diffraction patterns were characteristic for amorphous films. Lig presence in thin films was undoubtedly proved by both X-ray Photoelectron and Fourier Transform Infra-Red Spectroscopy analyses. The microbiological evaluation showed that the newly assembled surfaces exhibited an inhibitory activity both on the initial steps of biofilm forming, and on mature bacterial and fungal biofilm development. The intensity of the anti-biofilm activity was positively influenced by the presence of the Lig and/or Ag, in the case of Staphylococcus aureus, Pseudomonas aeruginosa and Candida famata biofilms. The obtained surfaces exhibited a low cytotoxicity toward human mesenchymal stem cells, being therefore promising candidates for fabricating implantable biomaterials with increased biocompatibility and resistance to microbial colonization and further biofilm development.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 60 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
Unknown 59 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 17%
Researcher 10 17%
Professor 5 8%
Student > Bachelor 5 8%
Professor > Associate Professor 5 8%
Other 8 13%
Unknown 17 28%
Readers by discipline Count As %
Materials Science 9 15%
Medicine and Dentistry 6 10%
Engineering 6 10%
Physics and Astronomy 5 8%
Chemistry 4 7%
Other 9 15%
Unknown 21 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 January 2015.
All research outputs
#14,794,387
of 22,778,347 outputs
Outputs from Journal of Materials Science: Materials in Medicine
#1,013
of 1,400 outputs
Outputs of similar age
#198,422
of 353,085 outputs
Outputs of similar age from Journal of Materials Science: Materials in Medicine
#12
of 37 outputs
Altmetric has tracked 22,778,347 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,400 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 25th percentile – i.e., 25% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 353,085 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 37 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.