↓ Skip to main content

Potential of selected fungal species to degrade wheat straw, the most abundant plant raw material in Europe

Overview of attention for article published in BMC Plant Biology, December 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
26 Dimensions

Readers on

mendeley
54 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Potential of selected fungal species to degrade wheat straw, the most abundant plant raw material in Europe
Published in
BMC Plant Biology, December 2017
DOI 10.1186/s12870-017-1196-y
Pubmed ID
Authors

Jasmina Ćilerdžić, Milica Galić, Jelena Vukojević, Ilija Brčeski, Mirjana Stajić

Abstract

Structural component of plant biomass, lignocellulose, is the most abundant renewable resource in nature. Lignin is the most recalcitrant natural aromatic polymer and its degradation presents great challenge. Nowadays, the special attention is given to biological delignification, the process where white-rot fungi take the crucial place owing to strong ligninolytic enzyme system. However, fungal species, even strains, differ in potential to produce high active ligninolytic enzymes and consequently to delignify plant biomass. Therefore, the goals of the study were characterization of Mn-oxidizing peroxidases and laccases of numerous mushrooms as well as determination of their potential to delignify wheat straw, the plant raw material that, according to annual yield, takes the first place in Europe and the second one in the world. During wheat straw fermentation, Lentinus edodes HAI 858 produced the most active Mn-dependent and Mn-independent peroxidases (1443.2 U L-1 and 1045.5 U L-1, respectively), while Pleurotus eryngii HAI 711 was the best laccase producer (7804.3 U L-1). Visualized bends on zymogram confirmed these activities and demonstrated that laccases were the dominant ligninolytic enzymes in the studied species. Ganoderma lucidum BEOFB 435 showed considerable ability to degrade lignin (58.5%) and especially hemicellulose (74.8%), while the cellulose remained almost intact (0.7%). Remarkable selectivity in lignocellulose degradation was also noted in Pleurotus pulmonarius HAI 573 where degraded amounts of lignin, hemicellulose and cellulose were in ratio of 50.4%:15.3%:3.8%. According to the presented results, it can be concluded that white-rot fungi, due to ligninolytic enzymes features and degradation potential, could be important participants in various biotechnological processes including biotransformation of lignocellulose residues/wastes in food, feed, paper and biofuels.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 54 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 54 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 15%
Student > Ph. D. Student 7 13%
Student > Master 6 11%
Student > Doctoral Student 5 9%
Lecturer 4 7%
Other 8 15%
Unknown 16 30%
Readers by discipline Count As %
Agricultural and Biological Sciences 10 19%
Engineering 4 7%
Chemical Engineering 3 6%
Environmental Science 3 6%
Biochemistry, Genetics and Molecular Biology 3 6%
Other 10 19%
Unknown 21 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 July 2018.
All research outputs
#16,099,609
of 23,881,329 outputs
Outputs from BMC Plant Biology
#1,516
of 3,322 outputs
Outputs of similar age
#275,593
of 446,550 outputs
Outputs of similar age from BMC Plant Biology
#38
of 90 outputs
Altmetric has tracked 23,881,329 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,322 research outputs from this source. They receive a mean Attention Score of 3.0. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 446,550 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 90 others from the same source and published within six weeks on either side of this one. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.