↓ Skip to main content

Disentangling the effects of low pH and metal mixture toxicity on macroinvertebrate diversity

Overview of attention for article published in Environmental Pollution, February 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (63rd percentile)
  • Good Attention Score compared to outputs of the same age and source (65th percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
48 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Disentangling the effects of low pH and metal mixture toxicity on macroinvertebrate diversity
Published in
Environmental Pollution, February 2018
DOI 10.1016/j.envpol.2017.12.097
Pubmed ID
Authors

Riccardo Fornaroli, Alessio Ippolito, Mari J. Tolkkinen, Heikki Mykrä, Timo Muotka, Laurie S. Balistrieri, Travis S. Schmidt

Abstract

One of the primary goals of biological assessment of streams is to identify which of a suite of chemical stressors is limiting their ecological potential. Elevated metal concentrations in streams are often associated with low pH, yet the effects of these two potentially limiting factors of freshwater biodiversity are rarely considered to interact beyond the effects of pH on metal speciation. Using a dataset from two continents, a biogeochemical model of the toxicity of metal mixtures (Al, Cd, Cu, Pb, Zn) and quantile regression, we addressed the relative importance of both pH and metals as limiting factors for macroinvertebrate communities. Current environmental quality standards for metals proved to be protective of stream macroinvertebrate communities and were used as a starting point to assess metal mixture toxicity. A model of metal mixture toxicity accounting for metal interactions was a better predictor of macroinvertebrate responses than a model considering individual metal toxicity. We showed that the direct limiting effect of pH on richness was of the same magnitude as that of chronic metal toxicity, independent of its influence on the availability and toxicity of metals. By accounting for the direct effect of pH on macroinvertebrate communities, we were able to determine that acidic streams supported less diverse communities than neutral streams even when metals were below no-effect thresholds. Through a multivariate quantile model, we untangled the limiting effect of both pH and metals and predicted the maximum diversity that could be expected at other sites as a function of these variables. This model can be used to identify which of the two stressors is more limiting to the ecological potential of running waters.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 48 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 48 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 8 17%
Researcher 7 15%
Student > Ph. D. Student 7 15%
Student > Bachelor 5 10%
Professor 3 6%
Other 4 8%
Unknown 14 29%
Readers by discipline Count As %
Environmental Science 14 29%
Agricultural and Biological Sciences 11 23%
Engineering 3 6%
Earth and Planetary Sciences 1 2%
Unknown 19 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 May 2018.
All research outputs
#7,359,319
of 25,382,440 outputs
Outputs from Environmental Pollution
#2,865
of 13,435 outputs
Outputs of similar age
#121,415
of 344,362 outputs
Outputs of similar age from Environmental Pollution
#52
of 165 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one has received more attention than most of these and is in the 69th percentile.
So far Altmetric has tracked 13,435 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.7. This one has done well, scoring higher than 77% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 344,362 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 63% of its contemporaries.
We're also able to compare this research output to 165 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 65% of its contemporaries.