↓ Skip to main content

Mechanisms underlying the vasorelaxation of human internal mammary artery induced by (-)-epicatechin

Overview of attention for article published in European Journal of Pharmacology, June 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Mechanisms underlying the vasorelaxation of human internal mammary artery induced by (-)-epicatechin
Published in
European Journal of Pharmacology, June 2015
DOI 10.1016/j.ejphar.2015.05.066
Pubmed ID
Authors

Aleksandra Novakovic, Marija Marinko, Aleksandra Vranic, Goran Jankovic, Predrag Milojevic, Ivan Stojanovic, Dragoslav Nenezic, Nenad Ugresic, Vladimir Kanjuh, Qin Yang, Guo-Wei He

Abstract

Evidences have suggested that flavanol compound (-)-epicatechin is associated with reduced risk of cardiovascular diseases. One of the mechanisms of its cardioprotective effect is vasodilation. However, the exact mechanisms by which (-)-epicatechin causes vasodilation are not yet clearly defined. The aims of the present study were to investigate relaxant effect of flavanol (-)-epicatechin on the isolated human internal mammary artery (HIMA) and to determine the mechanisms underlying its vasorelaxation. Our results showed that (-)-epicatechin induced a concentration-dependent relaxation of HIMA rings pre-contracted by phenylephrine. Among the K(+) channel blockers, 4-aminopyridine (4-AP) and margatoxin, blockers of voltage-gated K(+) (KV) channels, and glibenclamide, a selective ATP-sensitive K(+) (KATP) channels blocker, partly inhibited the (-)-epicatechin-induced relaxation of HIMA, while iberiotoxin, a most selective blocker of large conductance Ca(2+)-activated K(+) channels (BKCa), almost completely inhibited the relaxation. In rings pre-contracted by 80mMK(+), (-)-epicatechin induced partial relaxation of HIMA, whereas in Ca(2+)-free medium, (-)-epicatechin completely relaxed HIMA rings pre-contracted by phenylephrine and caffeine. Finally, thapsigargin, a sarcoplasmic reticulum Ca(2+)-ATPase inhibitor, slightly antagonized (-)-epicatechin-induced relaxation of HIMA pre-contracted by phenylephrine. These results suggest that (-)-epicatechin induces strong endothelium-independent relaxation of HIMA pre-contracted by phenylephrine whilst 4-AP- and margatoxin-sensitive KV channels, as well as BKCa and KATP channels, located in vascular smooth muscle, mediate this relaxation. In addition, it seems that (-)-epicatechin could inhibit influx of extracellular Ca(2+), interfere with intracellular Ca(2+) release and re-uptake by the sarcoplasmic reticulum.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 18%
Student > Bachelor 3 14%
Researcher 3 14%
Student > Master 2 9%
Professor > Associate Professor 2 9%
Other 2 9%
Unknown 6 27%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 4 18%
Medicine and Dentistry 4 18%
Biochemistry, Genetics and Molecular Biology 2 9%
Agricultural and Biological Sciences 2 9%
Nursing and Health Professions 2 9%
Other 2 9%
Unknown 6 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 June 2015.
All research outputs
#22,760,732
of 25,374,917 outputs
Outputs from European Journal of Pharmacology
#7,594
of 8,584 outputs
Outputs of similar age
#239,921
of 281,101 outputs
Outputs of similar age from European Journal of Pharmacology
#111
of 139 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 8,584 research outputs from this source. They receive a mean Attention Score of 4.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 281,101 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 139 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.