↓ Skip to main content

Photoreduction of Hg( ii ) and photodemethylation of methylmercury: the key role of thiol sites on dissolved organic matter

Overview of attention for article published in Environmental Science: Processes & Impacts, January 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user
facebook
1 Facebook page

Citations

dimensions_citation
52 Dimensions

Readers on

mendeley
54 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Photoreduction of Hg( ii ) and photodemethylation of methylmercury: the key role of thiol sites on dissolved organic matter
Published in
Environmental Science: Processes & Impacts, January 2015
DOI 10.1039/c5em00305a
Pubmed ID
Authors

Jeffrey D. Jeremiason, Joshua C. Portner, George R. Aiken, Amber J. Hiranaka, Michelle T. Dvorak, Khuyen T. Tran, Douglas E. Latch

Abstract

This study examined the kinetics of photoreduction of Hg(ii) and photodemethylation of methylmercury (MeHg(+)) attached to, or in the presence of, dissolved organic matter (DOM). Both Hg(ii) and MeHg(+) are principally bound to reduced sulfur groups associated with DOM in many freshwater systems. We propose that a direct photolysis mechanism is plausible for reduction of Hg(ii) bound to reduced sulfur groups on DOM while an indirect mechanism is supported for photodemethylation of MeHg(+) bound to DOM. UV spectra of Hg(ii) and MeHg(+) bound to thiol containing molecules demonstrate that the Hg(ii)-S bond is capable of absorbing UV-light in the solar spectrum to a much greater extent than MeHg(+)-S bonds. Experiments with chemically distinct DOM isolates suggest that concentration of DOM matters little in the photochemistry if there are enough reduced S sites present to strongly bind MeHg(+) and Hg(ii); DOM concentration does not play a prominent role in photodemethylation other than to screen light, which was demonstrated in a field experiment in the highly colored St. Louis River where photodemethylation was not observed at depths ≥10 cm. Experiments with thiol ligands yielded slower photodegradation rates for MeHg(+) than in experiments with DOM and thiols; rates in the presence of DOM alone were the fastest supporting an intra-DOM mechanism. Hg(ii) photoreduction rates, however, were similar in experiments with only DOM, thiols plus DOM, or only thiols suggesting a direct photolysis mechanism. Quenching experiments also support the existence of an intra-DOM photodemethylation mechanism for MeHg(+). Utilizing the difference in photodemethylation rates measured for MeHg(+) attached to DOM or thiol ligands, the binding constant for MeHg(+) attached to thiol groups on DOM was estimated to be 10(16.7).

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 54 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Unknown 53 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 22%
Student > Bachelor 7 13%
Researcher 7 13%
Student > Master 6 11%
Student > Doctoral Student 4 7%
Other 6 11%
Unknown 12 22%
Readers by discipline Count As %
Environmental Science 17 31%
Chemistry 9 17%
Earth and Planetary Sciences 7 13%
Agricultural and Biological Sciences 3 6%
Materials Science 1 2%
Other 1 2%
Unknown 16 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 November 2015.
All research outputs
#20,970,494
of 25,756,911 outputs
Outputs from Environmental Science: Processes & Impacts
#1,543
of 1,872 outputs
Outputs of similar age
#268,963
of 361,654 outputs
Outputs of similar age from Environmental Science: Processes & Impacts
#61
of 107 outputs
Altmetric has tracked 25,756,911 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,872 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one is in the 8th percentile – i.e., 8% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 361,654 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 107 others from the same source and published within six weeks on either side of this one. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.