↓ Skip to main content

Scrutinizing microwave effects on glucose uptake in yeast cells

Overview of attention for article published in European Biophysics Journal, April 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
6 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Scrutinizing microwave effects on glucose uptake in yeast cells
Published in
European Biophysics Journal, April 2016
DOI 10.1007/s00249-016-1131-4
Pubmed ID
Authors

Dragomir Stanisavljev, Gordana Gojgić-Cvijović, Itana Nuša Bubanja

Abstract

Taking into account different literature reports on microwave (MW) effects on living organisms, we thoroughly investigated the influence of constant 2.45 GHz MW irradiation on glucose uptake in yeast cells. A Saccharomyces cerevisiae suspension of 2.9 × 10(8) cells/ml was used in all experiments. A large specific absorption rate of 0.55 W/g of suspension is compensated by efficient external cooling of the reaction vessel, which established a strong non-equilibrium flow of energy through the solution and enabled a constant bulk temperature of 30 °C to within 1 °C during glucose uptake. Comparison of MW effects with control experiments revealed insignificant changes of glucose uptake during the initial stages of the experiment (up to the 10th min). Statistically "notable" differences during the next 20 min of the irradiation were detected corresponding to thermal overheating of 2 °C. Possible specific thermal MW effects may be related to local temperature increase and a large flow of energy throughout the system. The obtained effects show that environmental MW pollution (fortunately) is of too low intensity to provoke metabolic changes in living cells. At the same time, a longer exposure of cells to electromagnetic irradiation may have impacts on biochemical applications and production of valuable biotechnological products.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 6 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 6 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 2 33%
Professor 1 17%
Student > Postgraduate 1 17%
Student > Master 1 17%
Unknown 1 17%
Readers by discipline Count As %
Chemistry 2 33%
Biochemistry, Genetics and Molecular Biology 1 17%
Arts and Humanities 1 17%
Agricultural and Biological Sciences 1 17%
Nursing and Health Professions 1 17%
Other 0 0%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 April 2016.
All research outputs
#20,322,106
of 22,865,319 outputs
Outputs from European Biophysics Journal
#418
of 491 outputs
Outputs of similar age
#253,209
of 298,924 outputs
Outputs of similar age from European Biophysics Journal
#3
of 7 outputs
Altmetric has tracked 22,865,319 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 491 research outputs from this source. They receive a mean Attention Score of 3.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 298,924 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 7 others from the same source and published within six weeks on either side of this one. This one has scored higher than 4 of them.