↓ Skip to main content

Lipidomic Profiling of Mastoid Bone and Tissue from Patients with Chronic Otomastoiditis

Overview of attention for article published in International Archives of Otorhinolaryngology, December 2014
Altmetric Badge

Mentioned by

facebook
1 Facebook page

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
15 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Lipidomic Profiling of Mastoid Bone and Tissue from Patients with Chronic Otomastoiditis
Published in
International Archives of Otorhinolaryngology, December 2014
DOI 10.1055/s-0034-1396522
Pubmed ID
Authors

Farbod Fazlollahi, Kessiri Kongmanas, Nongnuj Tanphaichitr, Jeffrey Suh, Kym Faull, Quinton Gopen

Abstract

Introduction Chronic otomastoiditis causes pain, otorrhea, and hearing loss resulting from the growth of tissue within the normally hollow mastoid cavity. Objectives In this report, we used a lipidomics approach to profile major mastoid bone and tissue lipids from patients with and without otomastoiditis. Methods The bone dust created during mastoidectomy, as well as the mastoid tissue, was analyzed from seven patients. Bone dust was also collected and analyzed in an additional four otologic cases (parotidectomy requiring mastoidectomy). Samples were subjected to a modified Bligh/Dyer lipid extraction, then high-performance thin-layer chromatography (HPTLC), combined gas chromatography/electron impact-mass spectrometry (GC/EI-MS), and flow-injection/electrospray ionization-tandem mass spectrometry (FI/ESI-MSMS). Data were analyzed for identification and profiling of major lipid components. Results HPTLC revealed the presence of various lipid classes, including phosphatidylcholines, cholesterol, and triacylglycerols. GC/EI-MS analysis revealed the presence of cholesterol and several fatty acids. FI/ESI-MSMS analysis revealed a host of phosphatidylcholines, phosphatidylethanolamines, and cholesteryl esters. Conclusion We used a lipidomics approach to develop an efficient (both in time and tissue amount) methodology for analysis of these tissues, identify the most abundant and common lipid species, and create a base of knowledge from which more focused endeavors in biomarker discovery can emerge. In an effort toward improved patient categorization and individualized intervention, the ultimate goal of this work is to correlate these lipid molecules to disease state and progression. This is the first reported study of its kind on these tissues.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 27%
Student > Ph. D. Student 4 27%
Student > Master 2 13%
Student > Bachelor 1 7%
Professor 1 7%
Other 1 7%
Unknown 2 13%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 20%
Medicine and Dentistry 3 20%
Agricultural and Biological Sciences 2 13%
Chemistry 2 13%
Immunology and Microbiology 1 7%
Other 2 13%
Unknown 2 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 May 2015.
All research outputs
#20,276,249
of 22,808,725 outputs
Outputs from International Archives of Otorhinolaryngology
#305
of 645 outputs
Outputs of similar age
#302,379
of 360,972 outputs
Outputs of similar age from International Archives of Otorhinolaryngology
#14
of 25 outputs
Altmetric has tracked 22,808,725 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 645 research outputs from this source. They receive a mean Attention Score of 1.6. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 360,972 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 25 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.