↓ Skip to main content

Exploration of gene functions for esophageal squamous cell carcinoma using network-based guilt by association principle

Overview of attention for article published in Brazilian Journal of Medical and Biological Research, January 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
6 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Exploration of gene functions for esophageal squamous cell carcinoma using network-based guilt by association principle
Published in
Brazilian Journal of Medical and Biological Research, January 2018
DOI 10.1590/1414-431x20186801
Pubmed ID
Authors

Wei Wu, Bo Huang, Yan Yan, Zhi-Qiang Zhong

Abstract

Gene networks have been broadly used to predict gene functions based on guilt by association (GBA) principle. Thus, in order to better understand the molecular mechanisms of esophageal squamous cell carcinoma (ESCC), our study was designed to use a network-based GBA method to identify the optimal gene functions for ESCC. To identify genomic bio-signatures for ESCC, microarray data of GSE20347 were first downloaded from a public functional genomics data repository of Gene Expression Omnibus database. Then, differentially expressed genes (DEGs) between ESCC patients and controls were identified using the LIMMA method. Afterwards, construction of differential co-expression network (DCN) was performed relying on DEGs, followed by gene ontology (GO) enrichment analysis based on a known confirmed database and DEGs. Eventually, the optimal gene functions were predicted using GBA algorithm based on the area under the curve (AUC) for each GO term. Overall, 43 DEGs and 67 GO terms were gained for subsequent analysis. GBA predictions demonstrated that 13 GO functions with AUC>0.7 had a good classification ability. Significantly, 6 out of 13 GO terms yielded AUC>0.8, which were determined as the optimal gene functions. Interestingly, there were two GO categories with AUC>0.9, which included cell cycle checkpoint (AUC=0.91648), and mitotic sister chromatid segregation (AUC=0.91597). Our findings highlight the clinical implications of cell cycle checkpoint and mitotic sister chromatid segregation in ESCC progression and provide the molecular foundation for developing therapeutic targets.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 6 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 6 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 2 33%
Researcher 1 17%
Student > Doctoral Student 1 17%
Student > Master 1 17%
Unknown 1 17%
Readers by discipline Count As %
Medicine and Dentistry 3 50%
Agricultural and Biological Sciences 1 17%
Computer Science 1 17%
Unknown 1 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 April 2018.
All research outputs
#22,767,715
of 25,382,440 outputs
Outputs from Brazilian Journal of Medical and Biological Research
#1,018
of 1,254 outputs
Outputs of similar age
#389,382
of 449,583 outputs
Outputs of similar age from Brazilian Journal of Medical and Biological Research
#55
of 85 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,254 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 449,583 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 85 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.