↓ Skip to main content

Mucopolysacccharidoses: from understanding to treatment, a century of discoveries

Overview of attention for article published in Genetics and Molecular Biology, December 2012
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (73rd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (64th percentile)

Mentioned by

twitter
2 X users
wikipedia
1 Wikipedia page

Citations

dimensions_citation
57 Dimensions

Readers on

mendeley
70 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Mucopolysacccharidoses: from understanding to treatment, a century of discoveries
Published in
Genetics and Molecular Biology, December 2012
DOI 10.1590/s1415-47572012000600006
Pubmed ID
Authors

Roberto Giugliani

Abstract

After the first description of a patient recognized as a MPS case was made in 1917, several similar cases were described and identified. Observations reported in the middle of the twentieth century concerning the presence of acid mucopolysaccharides (later called glycosaminoglycans, or GAGs) in tissues and especially in urine of patients were instrumental in providing an identity for these diseases, which became referred as "mucopolysaccharidoses" (MPS). In the late 1960's it was demonstrated that MPS were caused by defects in the breakdown of GAGs, and the specific enzyme deficiencies for the 11 types and subtypes of MPS were identified thereafter. Genes involved in the MPS were subsequently identified, and a large number of disease-causing mutations were identified in each one. Although individually rare, MPS are relatively frequent as a group, with an overall incidence estimated as 1:22,000. The increased excretion of urinary GAGs observed in the vast majority of MPS patients provides a simple screening method, the diagnosis usually being confirmed by the identification of the specific enzyme deficiency. Molecular analysis also plays a role, being helpful for phenotype prediction, prenatal diagnosis and especially for the identification of carriers. As the diseases are rare and diagnosis requires sophisticated methods, the establishment of reference laboratories for MPS identification is recommended. The successful experience of the MPS Brazil Network in providing access to information and diagnosis may be considered as an option for developing countries. The development of therapeutic strategies for MPS, including bone marrow/hematopoietic stem cell transplantation (BMT/HSCT) and enzyme replacement therapy (ERT), changed the natural history of many MPS types. However, some challenges still remain, including the prevention of cognitive decline which occurs in some MPS. Newer approaches, such as intratechal ERT, substrate reduction therapy, read-through, gene therapy and encapsulated modified cells may provide a better outcome for these diseases in the near future. As early diagnosis and early treatment seems to improve treatment outcomes, and as newborn screening is now technically feasible, pilot programs (including one in progress in an area with high-incidence of MPS VI in northeastern Brazil) should provide information about its potential impact in reducing the morbidity associated with MPS diseases.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 70 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 1%
Brazil 1 1%
Unknown 68 97%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 13 19%
Student > Master 13 19%
Student > Ph. D. Student 8 11%
Other 5 7%
Student > Doctoral Student 4 6%
Other 8 11%
Unknown 19 27%
Readers by discipline Count As %
Medicine and Dentistry 20 29%
Biochemistry, Genetics and Molecular Biology 10 14%
Agricultural and Biological Sciences 5 7%
Pharmacology, Toxicology and Pharmaceutical Science 3 4%
Psychology 3 4%
Other 5 7%
Unknown 24 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 September 2023.
All research outputs
#7,355,930
of 25,374,647 outputs
Outputs from Genetics and Molecular Biology
#110
of 771 outputs
Outputs of similar age
#72,411
of 288,536 outputs
Outputs of similar age from Genetics and Molecular Biology
#6
of 17 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one has received more attention than most of these and is in the 69th percentile.
So far Altmetric has tracked 771 research outputs from this source. They receive a mean Attention Score of 4.8. This one has done well, scoring higher than 83% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 288,536 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.
We're also able to compare this research output to 17 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.