↓ Skip to main content

GWAS for serum galactose-deficient IgA1 implicates critical genes of the O-glycosylation pathway

Overview of attention for article published in PLoS Genetics, February 2017
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (97th percentile)
  • High Attention Score compared to outputs of the same age and source (93rd percentile)

Mentioned by

news
11 news outlets
twitter
11 X users
facebook
1 Facebook page

Readers on

mendeley
74 Mendeley
Title
GWAS for serum galactose-deficient IgA1 implicates critical genes of the O-glycosylation pathway
Published in
PLoS Genetics, February 2017
DOI 10.1371/journal.pgen.1006609
Pubmed ID
Authors

Krzysztof Kiryluk, Yifu Li, Zina Moldoveanu, Hitoshi Suzuki, Colin Reily, Ping Hou, Jingyuan Xie, Nikol Mladkova, Sindhuri Prakash, Clara Fischman, Samantha Shapiro, Robert A. LeDesma, Drew Bradbury, Iuliana Ionita-Laza, Frank Eitner, Thomas Rauen, Nicolas Maillard, Francois Berthoux, Jürgen Floege, Nan Chen, Hong Zhang, Francesco Scolari, Robert J. Wyatt, Bruce A. Julian, Ali G. Gharavi, Jan Novak

Abstract

Aberrant O-glycosylation of serum immunoglobulin A1 (IgA1) represents a heritable pathogenic defect in IgA nephropathy, the most common form of glomerulonephritis worldwide, but specific genetic factors involved in its determination are not known. We performed a quantitative GWAS for serum levels of galactose-deficient IgA1 (Gd-IgA1) in 2,633 subjects of European and East Asian ancestry and discovered two genome-wide significant loci, in C1GALT1 (rs13226913, P = 3.2 x 10-11) and C1GALT1C1 (rs5910940, P = 2.7 x 10-8). These genes encode molecular partners essential for enzymatic O-glycosylation of IgA1. We demonstrated that these two loci explain approximately 7% of variability in circulating Gd-IgA1 in Europeans, but only 2% in East Asians. Notably, the Gd-IgA1-increasing allele of rs13226913 is common in Europeans, but rare in East Asians. Moreover, rs13226913 represents a strong cis-eQTL for C1GALT1 that encodes the key enzyme responsible for the transfer of galactose to O-linked glycans on IgA1. By in vitro siRNA knock-down studies, we confirmed that mRNA levels of both C1GALT1 and C1GALT1C1 determine the rate of secretion of Gd-IgA1 in IgA1-producing cells. Our findings provide novel insights into the genetic regulation of O-glycosylation and are relevant not only to IgA nephropathy, but also to other complex traits associated with O-glycosylation defects, including inflammatory bowel disease, hematologic disease, and cancer.

X Demographics

X Demographics

The data shown below were collected from the profiles of 11 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 74 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 74 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 14 19%
Student > Bachelor 10 14%
Student > Ph. D. Student 9 12%
Student > Master 7 9%
Student > Doctoral Student 4 5%
Other 11 15%
Unknown 19 26%
Readers by discipline Count As %
Medicine and Dentistry 21 28%
Biochemistry, Genetics and Molecular Biology 10 14%
Agricultural and Biological Sciences 8 11%
Nursing and Health Professions 3 4%
Pharmacology, Toxicology and Pharmaceutical Science 2 3%
Other 7 9%
Unknown 23 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 89. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 August 2017.
All research outputs
#475,278
of 25,382,440 outputs
Outputs from PLoS Genetics
#292
of 8,960 outputs
Outputs of similar age
#10,612
of 427,435 outputs
Outputs of similar age from PLoS Genetics
#10
of 150 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 98th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 8,960 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 17.7. This one has done particularly well, scoring higher than 96% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 427,435 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 97% of its contemporaries.
We're also able to compare this research output to 150 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 93% of its contemporaries.