↓ Skip to main content

Restoration of Intracortical and Thalamocortical Circuits after Transplantation of Bone Marrow Mesenchymal Stem Cells into the Ischemic Brain of Mice

Overview of attention for article published in Cell Transplantation, November 2013
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
76 Dimensions

Readers on

mendeley
51 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Restoration of Intracortical and Thalamocortical Circuits after Transplantation of Bone Marrow Mesenchymal Stem Cells into the Ischemic Brain of Mice
Published in
Cell Transplantation, November 2013
DOI 10.3727/096368912x657909
Pubmed ID
Authors

Mingke Song, Osama Mohamad, Xiaohuan Gu, Ling Wei, Shan Ping Yu

Abstract

Transplantation of bone marrow mesenchymal stem cells (BMSCs) provides a promising regenerative medicine for stroke. Whether BMSC therapy could repair ischemia-damaged neuronal circuits and recover electrophysiological activity has largely been unknown. To address this issue, BMSCs were implanted into the ischemic barrel cortex of adult mice 1 and 7 days after focal barrel cortex stroke. Two days after the first transplantation (3 days after stroke), the infarct volume determined by TTC staining was significantly smaller in BMSC-treated compared to vehicle-treated stroke mice. The behavioral corner test showed better long-term recovery of sensorimotor function in BMSC-treated mice. Six weeks poststroke, thalamocortical slices were prepared and neuronal circuit activity in the peri-infarct region of the barrel cortex was determined by extracellular recordings of evoked field potentials. In BMSC-transplanted brain slices, the ischemia-disrupted intracortical activity from layer 4 to layer 2/3 was noticeably recovered, and the thalamocortical circuit connection was also partially restored. In contrast, much less and slower recovery was seen in control animals of barrel cortex stroke. Immunohistochemical staining disclosed that the density of neurons, axons, and blood vessels in the peri-infarct region was significantly higher in BMSC-treated mice, accompanied with enhanced local blood flow recovery. Western blotting showed that BMSC treatment increased the expression of stromal cell-derived factor-1 (SDF-1), vascular endothelial growth factor (VEGF), and brain-derived neurotrophic factor (BDNF) in the peri-infarct region. Moreover, the expression of the axonal growth associated protein-43 (GAP-43) was markedly increased, whereas the axonal growth inhibiting proteins ROCK II and NG2 were suppressed in the BMSC-treated brains. BMSC transplantation also promoted directional migration and survival of doublecortin (DCX)-positive neuroblasts in the peri-infarct region. The present investigation thus provides novel evidence that BMSC transplantation has the potential to repair the ischemia-damaged neural networks and restore lost neuronal connections. The recovered circuit activity likely contributes to the improved sensorimotor function after focal ischemic stroke and BMSC transplantation.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 51 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 51 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 8 16%
Researcher 8 16%
Student > Bachelor 7 14%
Student > Doctoral Student 6 12%
Student > Ph. D. Student 4 8%
Other 7 14%
Unknown 11 22%
Readers by discipline Count As %
Medicine and Dentistry 16 31%
Neuroscience 6 12%
Agricultural and Biological Sciences 6 12%
Biochemistry, Genetics and Molecular Biology 5 10%
Engineering 2 4%
Other 5 10%
Unknown 11 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 October 2012.
All research outputs
#20,169,675
of 22,681,577 outputs
Outputs from Cell Transplantation
#1,565
of 1,754 outputs
Outputs of similar age
#186,041
of 213,585 outputs
Outputs of similar age from Cell Transplantation
#12
of 17 outputs
Altmetric has tracked 22,681,577 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,754 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 213,585 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 17 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.