↓ Skip to main content

Patient-Specific Screening Using High-Grade Glioma Explants to Determine Potential Radiosensitization by a TGF-β Small Molecule Inhibitor

Overview of attention for article published in Neoplasia, December 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
36 Dimensions

Readers on

mendeley
42 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Patient-Specific Screening Using High-Grade Glioma Explants to Determine Potential Radiosensitization by a TGF-β Small Molecule Inhibitor
Published in
Neoplasia, December 2016
DOI 10.1016/j.neo.2016.08.008
Pubmed ID
Authors

N. Sumru Bayin, Lin Ma, Cheddhi Thomas, Rabaa Baitalmal, Akhila Sure, Kush Fansiwala, Mark Bustoros, John G. Golfinos, Donato Pacione, Matija Snuderl, David Zagzag, Mary Helen Barcellos-Hoff, Dimitris Placantonakis

Abstract

High-grade glioma (HGG), a deadly primary brain malignancy, manifests radioresistance mediated by cell-intrinsic and microenvironmental mechanisms. High levels of the cytokine transforming growth factor-β (TGF-β) in HGG promote radioresistance by enforcing an effective DNA damage response and supporting glioma stem cell self-renewal. Our analysis of HGG TCGA data and immunohistochemical staining of phosphorylated Smad2, which is the main transducer of canonical TGF-β signaling, indicated variable levels of TGF-β pathway activation across HGG tumors. These data suggest that evaluating the putative benefit of inhibiting TGF-β during radiotherapy requires personalized screening. Thus, we used explant cultures of seven HGG specimens as a rapid, patient-specific ex vivo platform to test the hypothesis that LY364947, a small molecule inhibitor of the TGF-β type I receptor, acts as a radiosensitizer in HGG. Immunofluorescence detection and image analysis of γ-H2AX foci, a marker of cellular recognition of radiation-induced DNA damage, and Sox2, a stem cell marker that increases post-radiation, indicated that LY364947 blocked these radiation responses in five of seven specimens. Collectively, our findings suggest that TGF-β signaling increases radioresistance in most, but not all, HGGs. We propose that short-term culture of HGG explants provides a flexible and rapid platform for screening context-dependent efficacy of radiosensitizing agents in patient-specific fashion. This time- and cost-effective approach could be used to personalize treatment plans in HGG patients.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 42 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Mexico 1 2%
Unknown 41 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 21%
Student > Master 8 19%
Student > Bachelor 6 14%
Student > Doctoral Student 3 7%
Researcher 2 5%
Other 5 12%
Unknown 9 21%
Readers by discipline Count As %
Medicine and Dentistry 11 26%
Biochemistry, Genetics and Molecular Biology 7 17%
Nursing and Health Professions 4 10%
Neuroscience 4 10%
Agricultural and Biological Sciences 2 5%
Other 5 12%
Unknown 9 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 November 2017.
All research outputs
#15,740,207
of 25,374,647 outputs
Outputs from Neoplasia
#921
of 1,368 outputs
Outputs of similar age
#234,379
of 419,608 outputs
Outputs of similar age from Neoplasia
#12
of 18 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,368 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.3. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 419,608 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 18 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.