↓ Skip to main content

Michigan Publishing

Amilorides inhibit SARS-CoV-2 replication in vitro by targeting RNA structures

Overview of attention for article published in bioRxiv, December 2020
Altmetric Badge

Mentioned by

news
1 news outlet
twitter
28 X users

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
39 Mendeley
Title
Amilorides inhibit SARS-CoV-2 replication in vitro by targeting RNA structures
Published in
bioRxiv, December 2020
DOI 10.1101/2020.12.05.409821
Pubmed ID
Authors

Zafferani Martina, Haddad Christina, Luo Le, Davila-Calderon Jesse, Yuan-Chiu Liang, Shema Mugisha Christian, Adeline G Monaghan, Andrew A Kennedy, Joseph D Yesselman, Robert R Gifford, Andrew W Tai, Sebla B Kutluay, Mei-Ling Li, Gary Brewer, Blanton S Tolbert, Amanda E Hargrove

Abstract

The SARS-CoV-2 pandemic, and the likelihood of future coronavirus pandemics, has rendered our understanding of coronavirus biology more essential than ever. Small molecule chemical probes offer to both reveal novel aspects of virus replication and to serve as leads for antiviral therapeutic development. The RNA-biased amiloride scaffold was recently tuned to target a viral RNA structure critical for translation in enterovirus 71, ultimately uncovering a novel mechanism to modulate positive-sense RNA viral translation and replication. Analysis of CoV RNA genomes reveal many conserved RNA structures in the 5'-UTR and proximal region critical for viral translation and replication, including several containing bulge-like secondary structures suitable for small molecule targeting. Following phylogenetic conservation analysis of this region, we screened an amiloride-based small molecule library against a less virulent human coronavirus, OC43, to identify lead ligands. Amilorides inhibited OC43 replication as seen in viral plaque assays. Select amilorides also potently inhibited replication competent SARS-CoV-2 as evident in the decreased levels of cell free virions in cell culture supernatants of treated cells. Reporter screens confirmed the importance of RNA structures in the 5'-end of the viral genome for small molecule activity. Finally, NMR chemical shift perturbation studies of the first six stem loops of the 5'-end revealed specific amiloride interactions with stem loops 4, 5a, and 6, all of which contain bulge like structures and were predicted to be strongly bound by the lead amilorides in retrospective docking studies. Taken together, the use of multiple orthogonal approaches allowed us to identify the first small molecules aimed at targeting RNA structures within the 5'-UTR and proximal region of the CoV genome. These molecules will serve as chemical probes to further understand CoV RNA biology and can pave the way for the development of specific CoV RNA-targeted antivirals.

X Demographics

X Demographics

The data shown below were collected from the profiles of 28 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 39 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 26%
Student > Ph. D. Student 5 13%
Student > Bachelor 4 10%
Student > Master 4 10%
Unspecified 3 8%
Other 5 13%
Unknown 8 21%
Readers by discipline Count As %
Chemistry 7 18%
Biochemistry, Genetics and Molecular Biology 6 15%
Agricultural and Biological Sciences 5 13%
Unspecified 3 8%
Nursing and Health Professions 2 5%
Other 8 21%
Unknown 8 21%