↓ Skip to main content

Rpl22 is required for IME1 mRNA translation and meiotic induction in S. cerevisiae

Overview of attention for article published in Cell Division, July 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
20 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Rpl22 is required for IME1 mRNA translation and meiotic induction in S. cerevisiae
Published in
Cell Division, July 2016
DOI 10.1186/s13008-016-0024-3
Pubmed ID
Authors

Stephen J. Kim, Randy Strich

Abstract

The transition from mitotic cell division to meiotic development in S. cerevisiae requires induction of a transient transcription program that is initiated by Ime1-dependent destruction of the repressor Ume6. Although IME1 mRNA is observed in vegetative cultures, Ime1 protein is not suggesting the presence of a regulatory system restricting translation to meiotic cells. This study demonstrates that IME1 mRNA translation requires Rpl22A and Rpl22B, eukaryotic-specific ribosomal protein paralogs of the 60S large subunit. In the absence of Rpl22 function, IME1 mRNA synthesis is normal in cultures induced to enter meiosis. However, Ime1 protein production is reduced and the Ume6 repressor is not destroyed in rpl22 mutant cells preventing early meiotic gene induction resulting in a pre-meiosis I arrest. This role for Rpl22 is not a general consequence of mutating non-essential large ribosomal proteins as strains lacking Rpl29 or Rpl39 execute meiosis with nearly wild-type efficiencies. Several results indicate that Rpl22 functions by enhancing IME1 mRNA translation. First, the Ime1 protein synthesized in rpl22 mutant cells demonstrates the same turnover rate as in wild-type cultures. In addition, IME1 transcript is found in polysome fractions isolated from rpl22 mutant cells indicating that mRNA nuclear export and ribosome association occurs. Finally, deleting the unusually long 5'UTR restores Ime1 levels and early meiotic gene transcription in rpl22 mutants suggesting that Rpl22 enhances translation through this element. Polysome profiles revealed that under conditions of high translational output, Rpl22 maintains high free 60S subunit levels thus preventing halfmer formation, a translation species indicative of mRNAs bound by an unpaired 40S subunit. In addition to meiosis, Rpl22 is also required for invasive and pseudohyphal growth. These findings indicate that Rpl22A and Rpl22B are required to selectively translate IME1 mRNA that is required for meiotic induction and subsequent gametogenesis. In addition, our results imply a more general role for Rpl22 in cell fate switches responding to environmental nitrogen signals.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 20 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 30%
Researcher 2 10%
Student > Master 2 10%
Student > Bachelor 1 5%
Student > Doctoral Student 1 5%
Other 0 0%
Unknown 8 40%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 30%
Agricultural and Biological Sciences 6 30%
Unknown 8 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 August 2016.
All research outputs
#20,336,685
of 22,881,964 outputs
Outputs from Cell Division
#119
of 131 outputs
Outputs of similar age
#320,159
of 365,423 outputs
Outputs of similar age from Cell Division
#2
of 2 outputs
Altmetric has tracked 22,881,964 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 131 research outputs from this source. They receive a mean Attention Score of 3.1. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 365,423 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 2 others from the same source and published within six weeks on either side of this one.