↓ Skip to main content

Quantitative analysis of mucosal oxygenation using ex vivo imaging of healthy and inflamed mammalian colon tissue

Overview of attention for article published in Cellular and Molecular Life Sciences, August 2016
Altmetric Badge

Mentioned by

twitter
3 X users

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
41 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Quantitative analysis of mucosal oxygenation using ex vivo imaging of healthy and inflamed mammalian colon tissue
Published in
Cellular and Molecular Life Sciences, August 2016
DOI 10.1007/s00018-016-2323-x
Pubmed ID
Authors

Alexander V. Zhdanov, Irina A. Okkelman, Anna V. Golubeva, Barbara Doerr, Niall P. Hyland, Silvia Melgar, Fergus Shanahan, John F. Cryan, Dmitri B. Papkovsky

Abstract

Colonic inflammation is associated with decreased tissue oxygenation, significantly affecting gut homeostasis. However, the crosstalk between O2 consumption and supply in the inflamed tissue are not fully understood. Using a murine model of colitis, we analysed O2 in freshly prepared samples of healthy and inflamed colon tissue. We developed protocols for efficient ex vivo staining of mouse distal colon mucosa with a cell-penetrating O2 sensitive probe Pt-Glc and high-resolution imaging of O2 concentration in live tissue by confocal phosphorescence lifetime-imaging microscopy (PLIM). Microscopy analysis revealed that Pt-Glc stained mostly the top 50-60 μm layer of the mucosa, with high phosphorescence intensity in epithelial cells. Measured O2 values in normal mouse tissue ranged between 5 and 35 μM (4-28 Torr), tending to decrease in the deeper tissue areas. Four-day treatment with dextran sulphate sodium (DSS) triggered colon inflammation, as evidenced by an increase in local IL6 and mKC mRNA levels, but did not affect the gross architecture of colonic epithelium. We further observed an increase in oxygenation, partial activation of hypoxia inducible factor (HIF) 1 signalling, and negative trends in pyruvate dehydrogenase activity and O2 consumption rate in the colitis mucosa, suggesting a decrease in mitochondrial respiration, which is known to be regulated via HIF-1 signalling and pyruvate oxidation rate. These results along with efficient staining with Pt-Glc of rat and human colonic mucosa reveal high potential of PLIM platform as a powerful tool for the high-resolution analysis of the intestinal tissue oxygenation in patients with inflammatory bowel disease and other pathologies, affecting tissue respiration.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 41 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 41 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 24%
Student > Master 7 17%
Student > Ph. D. Student 5 12%
Lecturer 3 7%
Student > Bachelor 3 7%
Other 6 15%
Unknown 7 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 9 22%
Biochemistry, Genetics and Molecular Biology 8 20%
Medicine and Dentistry 5 12%
Chemistry 4 10%
Immunology and Microbiology 3 7%
Other 3 7%
Unknown 9 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 August 2017.
All research outputs
#18,530,416
of 23,794,258 outputs
Outputs from Cellular and Molecular Life Sciences
#3,334
of 4,151 outputs
Outputs of similar age
#265,605
of 361,352 outputs
Outputs of similar age from Cellular and Molecular Life Sciences
#39
of 53 outputs
Altmetric has tracked 23,794,258 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,151 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.0. This one is in the 16th percentile – i.e., 16% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 361,352 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 53 others from the same source and published within six weeks on either side of this one. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.