↓ Skip to main content

Quantifying the removal of red blood cells in Macaca mulatta during a Plasmodium coatneyi infection

Overview of attention for article published in Malaria Journal, August 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
30 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Quantifying the removal of red blood cells in Macaca mulatta during a Plasmodium coatneyi infection
Published in
Malaria Journal, August 2016
DOI 10.1186/s12936-016-1465-5
Pubmed ID
Authors

Luis L. Fonseca, Harnel S. Alezi, Alberto Moreno, John W. Barnwell, Mary R. Galinski, Eberhard O. Voit

Abstract

Malaria is the most deadly parasitic disease in humans globally, and the long-time coexistence with malaria has left indelible marks in the human genome that are the causes of a variety of genetic disorders. Although anaemia is a common clinical complication of malaria, the root causes and mechanisms involved in the pathogenesis of malarial anaemia are unclear and difficult to study in humans. Non-human primate (NHP) model systems enable the mechanistic study and quantification of underlying causative factors of malarial anaemia, and particularly the onset of severe anaemia. Data were obtained in the course of Plasmodium coatneyi infections of malaria-naïve and semi-immune rhesus macaques (Macaca mulatta), whose red blood cells (RBCs) were labelled in situ with biotin at the time the infections were initiated. The data were used for a survival analysis that permitted, for the first time, an accurate estimation of the lifespan of erythrocytes in macaques. The data furthermore formed the basis for the development and parameterization of a recursive dynamic model of erythrocyte turnover, which was used for the quantification of RBC production and removal in each macaque. The computational analysis demonstrated that the lifespan of erythrocytes in macaques is 98 ± 21 days. The model also unambiguously showed that death due to senescence and parasitaemia is not sufficient to account for the extent of infection-induced anaemia. Specifically, the model permits, for the first time, the quantification of the different causes of RBC death, namely, normal senescence, age-independent random loss, parasitization, and bystander effects in uninfected cells. Such a dissection of the overall RBC removal process is hardly possible with experimental means alone. In the infected malaria-naïve macaques, death of erythrocytes by normal physiological senescence processes accounts for 20 % and parasitization for only 4 %, whereas bystander effects are associated with an astonishing 76 % of total RBC losses. Model-based comparisons of alternative mechanisms involved in the bystander effect revealed that most of the losses are likely due to a process of removing uninfected RBCs of all age classes and only minimally due to an increased rate of senescence of the uninfected RBCs. A new malaria blood-stage model was developed for the analysis of data characterizing P. coatneyi infections of M. mulatta. The model used a discrete and recursive framework with age-structure that allowed the quantification of the most significant pathophysiological processes of RBC removal. The computational results revealed that the malarial anaemia caused by this parasite is mostly due to a loss of uninfected RBCs by an age-independent process. The biological identity and complete mechanism of this process is not fully understood and requires further investigation.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
Unknown 29 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 20%
Student > Bachelor 4 13%
Student > Master 4 13%
Researcher 3 10%
Other 2 7%
Other 5 17%
Unknown 6 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 7 23%
Medicine and Dentistry 4 13%
Immunology and Microbiology 3 10%
Biochemistry, Genetics and Molecular Biology 2 7%
Arts and Humanities 2 7%
Other 4 13%
Unknown 8 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 August 2016.
All research outputs
#20,337,210
of 22,882,389 outputs
Outputs from Malaria Journal
#5,340
of 5,579 outputs
Outputs of similar age
#311,454
of 355,875 outputs
Outputs of similar age from Malaria Journal
#148
of 153 outputs
Altmetric has tracked 22,882,389 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,579 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 355,875 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 153 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.