↓ Skip to main content

Synthesis, characterization, and performance evaluation of multilayered photoanodes by introducing mesoporous carbon and TiO2 for humic acid adsorption

Overview of attention for article published in International Journal of Nanomedicine, August 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 tweeters

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
9 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Synthesis, characterization, and performance evaluation of multilayered photoanodes by introducing mesoporous carbon and TiO<sub>2</sub> for humic acid adsorption
Published in
International Journal of Nanomedicine, August 2016
DOI 10.2147/ijn.s96558
Pubmed ID
Authors

Hossein Jahangirian, Soraya Hosseini, Thomas Webster, Salman Masoudi Soltani, Mohamed Aroua

Abstract

Nanostructured photoanodes were prepared via a novel combination of titanium dioxide (TiO2) nanoparticles and mesoporous carbon (C). Four different photoanodes were synthesized by sol-gel spin coating onto a glassy substrate of fluorine-doped tin oxide. The photocatalytic activities of TiO2, TiO2/C/TiO2, TiO2/C/C/TiO2, and TiO2/C/TiO2/C/TiO2 photoanodes were evaluated by exposing the synthesized photoanodes to UV-visible light. The photocurrent density observed in these photoanodes confirmed that an additional layer of mesoporous carbon could successfully increase the photocurrent density. The highest photocurrent density of ~1.022 mA cm(-2) at 1 V/saturated calomel electrode was achieved with TiO2/C/C/TiO2 under an illumination intensity of 100 mW cm(-2) from a solar simulator. The highest value of surface roughness was measured for a TiO2/C/C/TiO2 combination owing to the presence of two continuous layers of mesoporous carbon. The resulting films had a thickness ranging from 1.605 µm to 5.165 µm after the calcination process. The presence of double-layer mesoporous carbon resulted in a 20% increase in the photocurrent density compared with the TiO2/C/TiO2 combination when only a single mesoporous carbon layer was employed. The improved performance of these photoanodes can be attributed to the enhanced porosity and increased void space due to the presence of mesoporous carbon. For the first time, it has been demonstrated here that the photoelectrochemical performance of TiO2 can be improved by integrating several layers of mesoporous carbon. Comparison of the rate of removal of humic acid by the prepared photoanodes showed that the highest performance from TiO2/C/C/TiO2 was due to the highest photocurrent density generated. Therefore, this study showed that optimizing the sequence of mesoporous carbon layers can be a viable and inexpensive method for enhanced humic acid removal.

Twitter Demographics

The data shown below were collected from the profiles of 2 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 2 22%
Student > Ph. D. Student 1 11%
Lecturer 1 11%
Student > Master 1 11%
Student > Postgraduate 1 11%
Other 0 0%
Unknown 3 33%
Readers by discipline Count As %
Materials Science 2 22%
Energy 1 11%
Physics and Astronomy 1 11%
Chemistry 1 11%
Pharmacology, Toxicology and Pharmaceutical Science 1 11%
Other 0 0%
Unknown 3 33%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 August 2016.
All research outputs
#4,377,371
of 8,229,276 outputs
Outputs from International Journal of Nanomedicine
#1,007
of 1,809 outputs
Outputs of similar age
#139,491
of 252,985 outputs
Outputs of similar age from International Journal of Nanomedicine
#99
of 129 outputs
Altmetric has tracked 8,229,276 research outputs across all sources so far. This one is in the 27th percentile – i.e., 27% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,809 research outputs from this source. They receive a mean Attention Score of 2.6. This one is in the 29th percentile – i.e., 29% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 252,985 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 34th percentile – i.e., 34% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 129 others from the same source and published within six weeks on either side of this one. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.