↓ Skip to main content

Effective cultivation of microalgae for biofuel production: a pilot-scale evaluation of a novel oleaginous microalga Graesiella sp. WBG-1

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, June 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (83rd percentile)
  • High Attention Score compared to outputs of the same age and source (86th percentile)

Mentioned by

news
1 news outlet
twitter
1 X user

Citations

dimensions_citation
113 Dimensions

Readers on

mendeley
209 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Effective cultivation of microalgae for biofuel production: a pilot-scale evaluation of a novel oleaginous microalga Graesiella sp. WBG-1
Published in
Biotechnology for Biofuels and Bioproducts, June 2016
DOI 10.1186/s13068-016-0541-y
Pubmed ID
Authors

Xiaobin Wen, Kui Du, Zhongjie Wang, Xinan Peng, Liming Luo, Huanping Tao, Yan Xu, Dan Zhang, Yahong Geng, Yeguang Li

Abstract

Commercial production of microalgal biodiesel is not yet economically viable, largely because of low storage lipid yield in microalgae mass cultivation. Selection of lipid-rich microalgae, thus, becomes one of the key research topics for microalgal biodiesel production. However, the laboratory screening protocols alone cannot predict the ability of the strains to dominate and perform in outdoor ponds. Comprehensive assessment of microalgae species should be performed not only under the laboratory conditions, but also in the fields. Laboratory investigations using a bubbled column photobioreactor indicated the microalga Graesiella sp. WBG-1 to be the most productive species among the 63 Chlorophyta strains. In a 10 L reactor, mimicking the industrial circular pond, Graesiella sp. WBG-1 produced 12.03 g biomass m(-2) day(-1) and 5.44 g lipids (45.23 % DW) m(-2) day(-1) under 15 mol m(-2) day(-1) artificial light irradiations. The lipid content decreased to ~34 % DW when the microalga was cultured in 30 L tank PBR under natural solar irradiations, but the decline of lipid content with scaling up was the minimum among the tested strains. Based on these results, the microalga was further tested for its lipid production and culture competitiveness using a pilot-scale raceway pond (200 m(2) illuminated area, culture volume 40,000 L). Consequently, Graesiella sp. WBG-1 maintained a high lipid content (33.4 % DW), of which ~90 % was storage TAGs. Results from the outdoor experiments indicated the nice adaptability of the Graesiella sp. WBG-1 to strong and fluctuating natural solar irradiance and temperature, and also demonstrated several other features, such as large cell size (easy for harvest and resistant to swallow by protozoa) and tolerance to high culture pH (helpful to CO2 fixation). Graesiella sp. WBG-1 was a promising strain capable of accumulating large amount of storage lipid under nature solar irradiance and temperature. The high lipid content of 33.4 % DW was achieved for the first time in pilot-scale raceway pond. The results also provide evidence for the feasibility of using low-cost raceway pond for autotrophic cultivation of microalgae for biodiesel production.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 209 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
India 1 <1%
Brazil 1 <1%
Unknown 207 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 35 17%
Student > Bachelor 26 12%
Researcher 24 11%
Student > Master 24 11%
Student > Doctoral Student 9 4%
Other 23 11%
Unknown 68 33%
Readers by discipline Count As %
Agricultural and Biological Sciences 40 19%
Chemical Engineering 20 10%
Environmental Science 18 9%
Biochemistry, Genetics and Molecular Biology 17 8%
Engineering 17 8%
Other 21 10%
Unknown 76 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 October 2017.
All research outputs
#3,415,350
of 25,373,627 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#172
of 1,578 outputs
Outputs of similar age
#58,968
of 368,505 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#4
of 44 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one has done well, scoring higher than 88% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 368,505 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 83% of its contemporaries.
We're also able to compare this research output to 44 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 86% of its contemporaries.