↓ Skip to main content

Aqueous extract from the Withania somnifera leaves as a potential anti-neuroinflammatory agent: a mechanistic study

Overview of attention for article published in Journal of Neuroinflammation, August 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (78th percentile)
  • Good Attention Score compared to outputs of the same age and source (77th percentile)

Mentioned by

news
1 news outlet
facebook
1 Facebook page

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
56 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Aqueous extract from the Withania somnifera leaves as a potential anti-neuroinflammatory agent: a mechanistic study
Published in
Journal of Neuroinflammation, August 2016
DOI 10.1186/s12974-016-0650-3
Pubmed ID
Authors

Muskan Gupta, Gurcharan Kaur

Abstract

Microglial-mediated neuroinflammation is a key factor underlying the pathogenesis of various neurodegenerative diseases and also an important target for the development of the neuroinflammation-targeted therapeutics. Conventionally, the nonsteroidal anti-inflammatory drugs (NSAIDs) are prescribed, but they are associated with long-term potential risks. Natural products are the cornerstone of modern therapeutics, and Ashwagandha is one such plant which is well known for its immunomodulatory properties in Ayurveda. The current study was aimed to investigate the anti-neuroinflammatory potential of Ashwagandha (Withania somnifera) leaf water extract (ASH-WEX) and one of its active chloroform fraction (fraction IV (FIV)) using β-amyloid and lipopolysaccharide (LPS)-stimulated primary microglial cells and BV-2 microglial cell line. Iba-1 and α-tubulin immunocytochemistry was done to study the LPS- and β-amyloid-induced morphological changes in microglial cells. Inflammatory molecules (NFkB, AP1), oxidative stress proteins (HSP 70, mortalin), apoptotic markers (Bcl-xl, PARP), cell cycle regulatory proteins (PCNA, Cyclin D1), and MHC II expression were analyzed by Western blotting. Mitotracker and CellRox Staining, Sandwich ELISA, and Gelatin Zymography were done to investigate ROS, pro-inflammatory cytokines, and matrix metalloproteinase production, respectively. Ashwagandha effect on microglial proliferation, migration, and its apoptosis-inducing potential was studied by cell cycle analysis, migration assay, and Annexin-V FITC assay, respectively. ASH-WEX and FIV pretreatment was seen to suppress the proliferation of activated microglia by causing cell cycle arrest at Go/G1 and G2/M phase along with decrease in cell cycle regulatory protein expression such as PCNA and Cyclin D1. Inhibition of microglial activation was revealed by their morphology and downregulated expression of microglial activation markers like MHC II and Iba-1. Both the extracts attenuated the TNF-α, IL-1β, IL-6, RNS, and ROS production via downregulating the expression of inflammatory proteins like NFkB and AP1. ASH-WEX and FIV also restricted the migration of activated microglia by downregulating metalloproteinase expression. Controlled proliferation rate was also accompanied by apoptosis of activated microglia. ASH-WEX and FIV were screened and found to possess Withaferin A and Withanone as active phytochemicals. The current data suggests that ASH-WEX and FIV inhibit microglial activation and migration and may prove to be a potential therapeutic candidate for the suppression of neuroinflammation in the treatment of neurodegenerative diseases.

Mendeley readers

The data shown below were compiled from readership statistics for 56 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 56 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 20 36%
Student > Master 10 18%
Student > Bachelor 8 14%
Researcher 5 9%
Other 3 5%
Other 6 11%
Unknown 4 7%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 21%
Biochemistry, Genetics and Molecular Biology 11 20%
Neuroscience 7 13%
Medicine and Dentistry 6 11%
Pharmacology, Toxicology and Pharmaceutical Science 5 9%
Other 8 14%
Unknown 7 13%

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 September 2016.
All research outputs
#2,540,119
of 15,150,221 outputs
Outputs from Journal of Neuroinflammation
#403
of 1,838 outputs
Outputs of similar age
#56,064
of 264,873 outputs
Outputs of similar age from Journal of Neuroinflammation
#4
of 18 outputs
Altmetric has tracked 15,150,221 research outputs across all sources so far. Compared to these this one has done well and is in the 83rd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,838 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.8. This one has done well, scoring higher than 77% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,873 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 78% of its contemporaries.
We're also able to compare this research output to 18 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 77% of its contemporaries.