↓ Skip to main content

Colony-stimulating factor 1 receptor blockade prevents fractionated whole-brain irradiation-induced memory deficits

Overview of attention for article published in Journal of Neuroinflammation, August 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (88th percentile)
  • High Attention Score compared to outputs of the same age and source (90th percentile)

Mentioned by

news
1 news outlet
blogs
1 blog
twitter
1 X user

Citations

dimensions_citation
65 Dimensions

Readers on

mendeley
62 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Colony-stimulating factor 1 receptor blockade prevents fractionated whole-brain irradiation-induced memory deficits
Published in
Journal of Neuroinflammation, August 2016
DOI 10.1186/s12974-016-0671-y
Pubmed ID
Authors

Xi Feng, Timothy D. Jopson, Maria Serena Paladini, Sharon Liu, Brian L. West, Nalin Gupta, Susanna Rosi

Abstract

Primary central nervous system (CNS) neoplasms and brain metastases are routinely treated with whole-brain radiation. Long-term survival occurs in many patients, but their quality of life is severely affected by the development of cognitive deficits, and there is no treatment to prevent these adverse effects. Neuroinflammation, associated with activation of brain-resident microglia and infiltrating monocytes, plays a pivotal role in loss of neurological function and has been shown to be associated with acute and long-term effects of brain irradiation. Colony-stimulating factor 1 receptor (CSF-1R) signaling is essential for the survival and differentiation of microglia and monocytes. Here, we tested the effects of CSF-1R blockade by PLX5622 on cognitive function in mice treated with three fractions of 3.3 Gy whole-brain irradiation. Young adult C57BL/6J mice were given three fractions of 3.3 Gy whole-brain irradiation while they were on diet supplemented with PLX5622, and the effects on periphery monocyte accumulation, microglia numbers, and neuronal functions were assessed. The mice developed hippocampal-dependent cognitive deficits at 1 and 3 months after they received fractionated whole-brain irradiation. The impaired cognitive function correlated with increased number of periphery monocyte accumulation in the CNS and decreased dendritic spine density in hippocampal granule neurons. PLX5622 treatment caused temporary reduction of microglia numbers, inhibited monocyte accumulation in the brain, and prevented radiation-induced cognitive deficits. Blockade of CSF-1R by PLX5622 prevents fractionated whole-brain irradiation-induced memory deficits. Therapeutic targeting of CSF-1R may provide a new avenue for protection from radiation-induced memory deficits.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 62 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 62 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 19%
Student > Bachelor 7 11%
Researcher 6 10%
Student > Doctoral Student 5 8%
Student > Postgraduate 5 8%
Other 14 23%
Unknown 13 21%
Readers by discipline Count As %
Medicine and Dentistry 11 18%
Neuroscience 10 16%
Agricultural and Biological Sciences 7 11%
Psychology 5 8%
Biochemistry, Genetics and Molecular Biology 3 5%
Other 8 13%
Unknown 18 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 15. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 May 2018.
All research outputs
#2,112,567
of 22,884,315 outputs
Outputs from Journal of Neuroinflammation
#265
of 2,644 outputs
Outputs of similar age
#39,022
of 336,882 outputs
Outputs of similar age from Journal of Neuroinflammation
#5
of 52 outputs
Altmetric has tracked 22,884,315 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 90th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,644 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one has done well, scoring higher than 89% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 336,882 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 88% of its contemporaries.
We're also able to compare this research output to 52 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 90% of its contemporaries.