↓ Skip to main content

Laws of Large Numbers and Langevin Approximations for Stochastic Neural Field Equations

Overview of attention for article published in The Journal of Mathematical Neuroscience, January 2013
Altmetric Badge

Mentioned by

facebook
1 Facebook page

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Laws of Large Numbers and Langevin Approximations for Stochastic Neural Field Equations
Published in
The Journal of Mathematical Neuroscience, January 2013
DOI 10.1186/2190-8567-3-1
Pubmed ID
Authors

Martin G Riedler, Evelyn Buckwar

Abstract

In this study, we consider limit theorems for microscopic stochastic models of neural fields. We show that the Wilson-Cowan equation can be obtained as the limit in uniform convergence on compacts in probability for a sequence of microscopic models when the number of neuron populations distributed in space and the number of neurons per population tend to infinity. This result also allows to obtain limits for qualitatively different stochastic convergence concepts, e.g., convergence in the mean. Further, we present a central limit theorem for the martingale part of the microscopic models which, suitably re-scaled, converges to a centred Gaussian process with independent increments. These two results provide the basis for presenting the neural field Langevin equation, a stochastic differential equation taking values in a Hilbert space, which is the infinite-dimensional analogue of the chemical Langevin equation in the present setting. On a technical level, we apply recently developed law of large numbers and central limit theorems for piecewise deterministic processes taking values in Hilbert spaces to a master equation formulation of stochastic neuronal network models. These theorems are valid for processes taking values in Hilbert spaces, and by this are able to incorporate spatial structures of the underlying model.Mathematics Subject Classification (2000): 60F05, 60J25, 60J75, 92C20.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 28%
Student > Ph. D. Student 5 28%
Student > Doctoral Student 3 17%
Professor 2 11%
Student > Bachelor 1 6%
Other 0 0%
Unknown 2 11%
Readers by discipline Count As %
Engineering 4 22%
Mathematics 3 17%
Neuroscience 3 17%
Medicine and Dentistry 2 11%
Agricultural and Biological Sciences 1 6%
Other 2 11%
Unknown 3 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 January 2013.
All research outputs
#20,178,948
of 22,693,205 outputs
Outputs from The Journal of Mathematical Neuroscience
#70
of 80 outputs
Outputs of similar age
#247,770
of 280,489 outputs
Outputs of similar age from The Journal of Mathematical Neuroscience
#6
of 6 outputs
Altmetric has tracked 22,693,205 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 80 research outputs from this source. They receive a mean Attention Score of 2.6. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,489 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 6 others from the same source and published within six weeks on either side of this one.