↓ Skip to main content

The Gene Ontology Handbook

Overview of attention for book
Cover of 'The Gene Ontology Handbook'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Primer on Ontologies
  3. Altmetric Badge
    Chapter 2 The Gene Ontology and the Meaning of Biological Function
  4. Altmetric Badge
    Chapter 3 Primer on the Gene Ontology
  5. Altmetric Badge
    Chapter 4 Best Practices in Manual Annotation with the Gene Ontology
  6. Altmetric Badge
    Chapter 5 Computational Methods for Annotation Transfers from Sequence
  7. Altmetric Badge
    Chapter 6 Text Mining to Support Gene Ontology Curation and Vice Versa
  8. Altmetric Badge
    Chapter 7 How Does the Scientific Community Contribute to Gene Ontology?
  9. Altmetric Badge
    Chapter 8 Evaluating Computational Gene Ontology Annotations
  10. Altmetric Badge
    Chapter 9 Evaluating Functional Annotations of Enzymes Using the Gene Ontology
  11. Altmetric Badge
    Chapter 10 Community-Wide Evaluation of Computational Function Prediction
  12. Altmetric Badge
    Chapter 11 Get GO! Retrieving GO Data Using AmiGO, QuickGO, API, Files, and Tools
  13. Altmetric Badge
    Chapter 12 Semantic Similarity in the Gene Ontology
  14. Altmetric Badge
    Chapter 13 Gene-Category Analysis
  15. Altmetric Badge
    Chapter 14 Gene Ontology: Pitfalls, Biases, and Remedies
  16. Altmetric Badge
    Chapter 15 Visualizing GO Annotations
  17. Altmetric Badge
    Chapter 16 A Gene Ontology Tutorial in Python
  18. Altmetric Badge
    Chapter 17 Annotation Extensions
  19. Altmetric Badge
    Chapter 18 The Evidence and Conclusion Ontology (ECO): Supporting GO Annotations
  20. Altmetric Badge
    Chapter 19 Complementary Sources of Protein Functional Information: The Far Side of GO
  21. Altmetric Badge
    Chapter 20 Integrating Bio-ontologies and Controlled Clinical Terminologies: From Base Pairs to Bedside Phenotypes
  22. Altmetric Badge
    Chapter 21 The Vision and Challenges of the Gene Ontology
Attention for Chapter 14: Gene Ontology: Pitfalls, Biases, and Remedies
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (88th percentile)
  • High Attention Score compared to outputs of the same age and source (94th percentile)

Mentioned by

twitter
25 X users

Citations

dimensions_citation
77 Dimensions

Readers on

mendeley
126 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Gene Ontology: Pitfalls, Biases, and Remedies
Chapter number 14
Book title
The Gene Ontology Handbook
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-3743-1_14
Pubmed ID
Book ISBNs
978-1-4939-3741-7, 978-1-4939-3743-1
Authors

Pascale Gaudet, Christophe Dessimoz

Editors

Christophe Dessimoz, Nives Škunca

Abstract

The Gene Ontology (GO) is a formidable resource, but there are several considerations about it that are essential to understand the data and interpret it correctly. The GO is sufficiently simple that it can be used without deep understanding of its structure or how it is developed, which is both a strength and a weakness. In this chapter, we discuss some common misinterpretations of the ontology and the annotations. A better understanding of the pitfalls and the biases in the GO should help users make the most of this very rich resource. We also review some of the misconceptions and misleading assumptions commonly made about GO, including the effect of data incompleteness, the importance of annotation qualifiers, and the transitivity or lack thereof associated with different ontology relations. We also discuss several biases that can confound aggregate analyses such as gene enrichment analyses. For each of these pitfalls and biases, we suggest remedies and best practices.

X Demographics

X Demographics

The data shown below were collected from the profiles of 25 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 126 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Netherlands 1 <1%
Sweden 1 <1%
Czechia 1 <1%
United Kingdom 1 <1%
Mexico 1 <1%
Nigeria 1 <1%
Russia 1 <1%
United States 1 <1%
Unknown 118 94%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 32 25%
Researcher 20 16%
Student > Master 14 11%
Student > Doctoral Student 8 6%
Student > Bachelor 8 6%
Other 19 15%
Unknown 25 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 36 29%
Biochemistry, Genetics and Molecular Biology 30 24%
Computer Science 12 10%
Immunology and Microbiology 6 5%
Medicine and Dentistry 4 3%
Other 11 9%
Unknown 27 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 14. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 December 2016.
All research outputs
#2,451,852
of 24,875,286 outputs
Outputs from Methods in molecular biology
#410
of 13,969 outputs
Outputs of similar age
#48,770
of 431,764 outputs
Outputs of similar age from Methods in molecular biology
#61
of 1,080 outputs
Altmetric has tracked 24,875,286 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 90th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,969 research outputs from this source. They receive a mean Attention Score of 3.5. This one has done particularly well, scoring higher than 97% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 431,764 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 88% of its contemporaries.
We're also able to compare this research output to 1,080 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 94% of its contemporaries.