↓ Skip to main content

De novo p.Arg756Cys mutation of ATP1A3 causes an atypical form of alternating hemiplegia of childhood with prolonged paralysis and choreoathetosis

Overview of attention for article published in BMC Neurology, September 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users
facebook
3 Facebook pages

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
31 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
De novo p.Arg756Cys mutation of ATP1A3 causes an atypical form of alternating hemiplegia of childhood with prolonged paralysis and choreoathetosis
Published in
BMC Neurology, September 2016
DOI 10.1186/s12883-016-0680-6
Pubmed ID
Authors

Hikaru Kanemasa, Ryoko Fukai, Yasunari Sakai, Michiko Torio, Noriko Miyake, Sooyoung Lee, Hiroaki Ono, Satoshi Akamine, Kei Nishiyama, Masafumi Sanefuji, Yoshito Ishizaki, Hiroyuki Torisu, Hirotomo Saitsu, Naomichi Matsumoto, Toshiro Hara

Abstract

Alternating hemiplegia of childhood (AHC) is a rare neurological disorder that manifests recurrent attacks of hemiplegia, oculogyric, and choreoathetotic involuntary movements. De novo mutations in ATP1A3 cause three types of neurological diseases: AHC; rapid-onset dystonia-Parkinsonism (RDP); and cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss (CAPOS) syndromes. It remains to be determined whether or not a rare mutation in ATP1A3 may cause atypical phenotypes. A 7-year-old boy presented with recurrent symptoms of generalized paralysis since 1 year and 5 months of age. Hypotonia, dystonia, and choreoathetosis persisted with exacerbation under febrile conditions, but no cerebellar ataxia had ever evolved in 6 years. Whole-exome sequencing (WES) was performed to determine his genetic background, and mutations were validated by the Sanger method. Crude protein extracts were prepared from the cultured cells, and expression of the wild-type or mutant ATP1A3 proteins were analyzed by Western blotting. WES identified a de novo pathogenic mutation in ATP1A3 (c.2266C > T:p.R756C) for this patient. A literature overview of two reported cases with p.R756C and p.R756H mutations showed both overlapping and distinct phenotypes when compared with those of the present case. The expression of the mutant form (R756C) of ATP1A3 did not differ markedly from that of the wild-type and D801N proteins. This study confirmed that p.R756C mutation of ATP1A3 cause atypical forms of AHC-associated disorders. The wide spectra of neurological phenotypes in AHC are linked to as-yet-unknown deficits in the functions of mutant ATP1A3.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 31 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 7 23%
Researcher 4 13%
Professor > Associate Professor 4 13%
Student > Master 3 10%
Student > Doctoral Student 1 3%
Other 2 6%
Unknown 10 32%
Readers by discipline Count As %
Nursing and Health Professions 4 13%
Agricultural and Biological Sciences 2 6%
Medicine and Dentistry 2 6%
Neuroscience 2 6%
Computer Science 1 3%
Other 3 10%
Unknown 17 55%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 September 2016.
All research outputs
#13,244,405
of 22,888,307 outputs
Outputs from BMC Neurology
#1,032
of 2,441 outputs
Outputs of similar age
#164,578
of 321,166 outputs
Outputs of similar age from BMC Neurology
#28
of 60 outputs
Altmetric has tracked 22,888,307 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,441 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.7. This one has gotten more attention than average, scoring higher than 56% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 321,166 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 60 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.