↓ Skip to main content

Improved osteogenesis and upregulated immunogenicity in human placenta-derived mesenchymal stem cells primed with osteogenic induction medium

Overview of attention for article published in Stem Cell Research & Therapy, September 2016
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
37 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Improved osteogenesis and upregulated immunogenicity in human placenta-derived mesenchymal stem cells primed with osteogenic induction medium
Published in
Stem Cell Research & Therapy, September 2016
DOI 10.1186/s13287-016-0400-6
Pubmed ID
Authors

Xuejie Fu, Huilin Yang, Hui Zhang, Guichao Wang, Ke Liu, Qiaoli Gu, Yunxia Tao, Guangcun Chen, Xiaohua Jiang, Gang Li, Yanzheng Gu, Qin Shi

Abstract

Mesenchymal stem cells (MSCs) are widely used in cell-based therapy owing to their multilineage potential and low immunogenicity. However, low differentiation efficiency and unpredictable immunogenicity of allogeneic MSCs in vivo limit their success in therapeutic treatment. Herein, we evaluated the differentiation potential and immunogenicity of human placenta-derived MSCs manipulated with osteogenic priming and dedifferentiation process. MSCs from human placentas were subjected to osteogenic induction and then cultivated in osteogenic factor-free media; the obtained cell population was termed dedifferentiated mesenchymal stem cells (De-MSCs). De-MSCs were induced into osteo-, chondro- and adipo-differentiation in vitro. Cell proliferation was quantified by a Cell-Counting Kit-8 or tritiated thymidine ([(3)H]-TdR) incorporation. Meanwhile, the osteogenesis of De-MSCs in vivo was assayed by real-time PCR and histological staining. The expressions of stem cell markers and co-stimulatory molecules on De-MSCs and lymphocytes from primed BALB/c mouse with De-MSCs were determined by flow cytometry. De-MSCs exhibited some properties similar to MSCs including multiple differentiation potential and hypoimmunogenicity. Upon re-osteogenic induction, De-MSCs exhibited higher differentiation capability than MSCs both in vitro and in vivo. Of note, De-MSCs had upregulated immunogenicity in association with their osteogenesis, reflected by the alternated expressions of co-stimulatory molecules on the surface and decreased suppression on T cell activation. Functionally, De-MSC-derived osteoblasts could prime lymphocytes of peripheral blood and spleen in BALB/c mice in vivo. These data are of great significance for the potential application of De-MSCs as an alternative resource for regenerative medicine and tissue engineering. In order to avoid being rejected by the host during allogeneic De-MSC therapy, we suggest that immune intervention should be considered to boost the immune acceptance and integration because of the upregulated immunogenicity of De-MSCs with redifferentiation in clinical applications.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 37 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 37 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 16%
Student > Master 6 16%
Student > Doctoral Student 4 11%
Student > Bachelor 2 5%
Researcher 2 5%
Other 8 22%
Unknown 9 24%
Readers by discipline Count As %
Medicine and Dentistry 8 22%
Biochemistry, Genetics and Molecular Biology 7 19%
Materials Science 3 8%
Agricultural and Biological Sciences 2 5%
Arts and Humanities 1 3%
Other 4 11%
Unknown 12 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 September 2016.
All research outputs
#18,472,072
of 22,889,074 outputs
Outputs from Stem Cell Research & Therapy
#1,733
of 2,425 outputs
Outputs of similar age
#243,108
of 320,232 outputs
Outputs of similar age from Stem Cell Research & Therapy
#30
of 41 outputs
Altmetric has tracked 22,889,074 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,425 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.0. This one is in the 15th percentile – i.e., 15% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 320,232 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 41 others from the same source and published within six weeks on either side of this one. This one is in the 9th percentile – i.e., 9% of its contemporaries scored the same or lower than it.