↓ Skip to main content

Depletion of γ-glutamylcyclotransferase inhibits breast cancer cell growth via cellular senescence induction mediated by CDK inhibitor upregulation

Overview of attention for article published in BMC Cancer, September 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
17 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Depletion of γ-glutamylcyclotransferase inhibits breast cancer cell growth via cellular senescence induction mediated by CDK inhibitor upregulation
Published in
BMC Cancer, September 2016
DOI 10.1186/s12885-016-2779-y
Pubmed ID
Authors

Kengo Matsumura, Susumu Nakata, Keiko Taniguchi, Hiromi Ii, Eishi Ashihara, Susumu Kageyama, Akihiro Kawauchi, Tatsuhiro Yoshiki

Abstract

Chromosome 7 open reading frame 24 (C7orf24) was originally identified as a highly expressed protein in various types of cancer, and later shown to be a γ-glutamylcyclotransferase (GGCT). GGCT depletion in cancer cells has anti-proliferative effects in vitro and in vivo, and it is therefore considered a promising candidate as a therapeutic target. However, the cellular events induced by GGCT depletion remain unclear. GGCT was depleted by siRNA in MCF7, MDA-MB-231, PC3, A172, Hela, and LNCaP cells. Induction of cellular senescence was evaluated with senescence-associated β-galactosidase (SA-β-Gal) staining. Expression levels of p21(WAF1/CIP1) and p16(INK4A) were assessed by qRT-PCR and Western blotting. Effects of simultaneous double knockdown of p21(WAF1/CIP1) and p16(INK4A) together with GGCT on cell cycle regulation and cell growth was measured by flow cytometry, and trypan blue dye exclusion test. We found that GGCT knockdown induces significant cellular senescence in various cancer cells. Cyclin dependent kinase inhibitor p21(WAF1/CIP1) and/or p16(INK4A) were upregulated in all cell lines tested. Simultaneous knockdown of p21(WAF1/CIP1) recovered the cell cycle arrest, attenuated cellular senescence induction, and rescued the subsequent growth inhibition in GGCT-silenced MCF7 breast cancer cells. In contrast, in GGCT silenced MDA-MB-231 breast cancer cells, GGCT depletion upregulated p16(INK4A), which played a regulatory role in senescence induction, instead of p21(WAF1/CIP1). Our findings demonstrate that induction of cellular senescence mediated by the upregulation of cyclin-dependent kinase inhibitors is a major event underlying the anti-proliferative effect of GGCT depletion in breast cancer cells, highlighting the potential of GGCT blockade as a therapeutic strategy to induce cellular senescence.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 18%
Researcher 3 18%
Student > Master 3 18%
Student > Bachelor 1 6%
Other 1 6%
Other 1 6%
Unknown 5 29%
Readers by discipline Count As %
Medicine and Dentistry 3 18%
Pharmacology, Toxicology and Pharmaceutical Science 2 12%
Agricultural and Biological Sciences 2 12%
Biochemistry, Genetics and Molecular Biology 1 6%
Psychology 1 6%
Other 1 6%
Unknown 7 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 September 2016.
All research outputs
#18,472,072
of 22,889,074 outputs
Outputs from BMC Cancer
#5,442
of 8,326 outputs
Outputs of similar age
#243,786
of 321,010 outputs
Outputs of similar age from BMC Cancer
#100
of 172 outputs
Altmetric has tracked 22,889,074 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 8,326 research outputs from this source. They receive a mean Attention Score of 4.3. This one is in the 21st percentile – i.e., 21% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 321,010 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 172 others from the same source and published within six weeks on either side of this one. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.