↓ Skip to main content

Synchrotron imaging of dentition provides insights into the biology of Hesperornis and Ichthyornis, the “last” toothed birds

Overview of attention for article published in BMC Evolutionary Biology, September 2016
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (93rd percentile)

Mentioned by

news
1 news outlet
blogs
2 blogs
twitter
22 tweeters
facebook
2 Facebook pages
wikipedia
1 Wikipedia page
googleplus
1 Google+ user
reddit
1 Redditor

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
39 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Synchrotron imaging of dentition provides insights into the biology of Hesperornis and Ichthyornis, the “last” toothed birds
Published in
BMC Evolutionary Biology, September 2016
DOI 10.1186/s12862-016-0753-6
Pubmed ID
Authors

Maïtena Dumont, Paul Tafforeau, Thomas Bertin, Bhart-Anjan Bhullar, Daniel Field, Anne Schulp, Brandon Strilisky, Béatrice Thivichon-Prince, Laurent Viriot, Antoine Louchart

Abstract

The dentitions of extinct organisms can provide pivotal information regarding their phylogenetic position, as well as paleobiology, diet, development, and growth. Extant birds are edentulous (toothless), but their closest relatives among stem birds, the Cretaceous Hesperornithiformes and Ichthyornithiformes, retained teeth. Despite their significant phylogenetic position immediately outside the avian crown group, the dentitions of these taxa have never been studied in detail. To obtain new insight into the biology of these 'last' toothed birds, we use cutting-edge visualisation techniques to describe their dentitions at unprecedented levels of detail, in particular propagation phase contrast x-ray synchrotron microtomography at high-resolution. Among other characteristics of tooth shape, growth, attachment, implantation, replacement, and dental tissue microstructures, revealed by these analyses, we find that tooth morphology and ornamentation differ greatly between the Hesperornithiformes and Ichthyornithiformes. We also highlight the first Old World, and youngest record of the major Mesozoic clade Ichthyornithiformes. Both taxa exhibit extremely thin and simple enamel. The extension rate of Hesperornis tooth dentine appears relatively high compared to non-avian dinosaurs. Root attachment is found for the first time to be fully thecodont via gomphosis in both taxa, but in Hesperornis secondary evolution led to teeth implantation in a groove, at least locally without a periodontal ligament. Dental replacement is shown to be lingual via a resorption pit in the root, in both taxa. Our results allow comparison with other archosaurs and also mammals, with implications regarding dental character evolution across amniotes. Some dental features of the 'last' toothed birds can be interpreted as functional adaptations related to diet and mode of predation, while others appear to be products of their peculiar phylogenetic heritage. The autapomorphic Hesperornis groove might have favoured firmer root attachment. These observations highlight complexity in the evolutionary history of tooth reduction in the avian lineage and also clarify alleged avian dental characteristics in the frame of a long-standing debate on bird origins. Finally, new hypotheses emerge that will possibly be tested by further analyses of avian teeth, for instance regarding dental replacement rates, or simplification and thinning of enamel throughout the course of early avian evolution.

Twitter Demographics

The data shown below were collected from the profiles of 22 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Japan 1 3%
Unknown 38 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 28%
Researcher 8 21%
Student > Bachelor 6 15%
Student > Master 4 10%
Unspecified 4 10%
Other 6 15%
Readers by discipline Count As %
Earth and Planetary Sciences 18 46%
Agricultural and Biological Sciences 9 23%
Unspecified 5 13%
Environmental Science 3 8%
Medicine and Dentistry 3 8%
Other 1 3%

Attention Score in Context

This research output has an Altmetric Attention Score of 36. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 February 2019.
All research outputs
#466,862
of 13,401,642 outputs
Outputs from BMC Evolutionary Biology
#126
of 2,501 outputs
Outputs of similar age
#16,242
of 265,840 outputs
Outputs of similar age from BMC Evolutionary Biology
#1
of 1 outputs
Altmetric has tracked 13,401,642 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 96th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,501 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.4. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 265,840 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 93% of its contemporaries.
We're also able to compare this research output to 1 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them