↓ Skip to main content

In vivo functional and molecular characterization of the Penicillin-Binding Protein 4 (DacB) of Pseudomonas aeruginosa

Overview of attention for article published in BMC Microbiology, October 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
46 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
In vivo functional and molecular characterization of the Penicillin-Binding Protein 4 (DacB) of Pseudomonas aeruginosa
Published in
BMC Microbiology, October 2016
DOI 10.1186/s12866-016-0853-x
Pubmed ID
Authors

Cristian Gustavo Aguilera Rossi, Paulino Gómez-Puertas, Juan Alfonso Ayala Serrano

Abstract

Community and nosocomial infections by Pseudomonas aeruginosa still create a major therapeutic challenge. The resistance of this opportunist pathogen to β-lactam antibiotics is determined mainly by production of the inactivating enzyme AmpC, a class C cephalosporinase with a regulation system more complex than those found in members of the Enterobacteriaceae family. This regulatory system also participates directly in peptidoglycan turnover and recycling. One of the regulatory mechanisms for AmpC expression, recently identified in clinical isolates, is the inactivation of LMM-PBP4 (Low-Molecular-Mass Penicillin-Binding Protein 4), a protein whose catalytic activity on natural substrates has remained uncharacterized until now. We carried out in vivo activity trials for LMM-PBP4 of Pseudomonas aeruginosa on macromolecular peptidoglycan of Escherichia coli and Pseudomonas aeruginosa. The results showed a decrease in the relative quantity of dimeric, trimeric and anhydrous units, and a smaller reduction in monomer disaccharide pentapeptide (M5) levels, validating the occurrence of D,D-carboxypeptidase and D,D-endopeptidase activities. Under conditions of induction for this protein and cefoxitin treatment, the reduction in M5 is not fully efficient, implying that LMM-PBP4 of Pseudomonas aeruginosa presents better behaviour as a D,D-endopeptidase. Kinetic evaluation of the direct D,D-peptidase activity of this protein on natural muropeptides M5 and D45 confirmed this bifunctionality and the greater affinity of LMM-PBP4 for its dimeric substrate. A three-dimensional model for the monomeric unit of LMM-PBP4 provided structural information which supports its catalytic performance. LMM-PBP4 of Pseudomonas aeruginosa is a bifunctional enzyme presenting both D,D-carboxypeptidase and D,D-endopeptidase activities; the D,D-endopeptidase function is predominant. Our study provides unprecedented functional and structural information which supports the proposal of this protein as a potential hydrolase-autolysin associated with peptidoglycan maturation and recycling. The fact that mutant PBP4 induces AmpC, may indicate that a putative muropeptide-subunit product of the DD-EPase activity of PBP4 could be a negative regulator of the pathway. This data contributes to understanding of the regulatory aspects of resistance to β-lactam antibiotics in this bacterial model.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 46 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 46 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 7 15%
Student > Bachelor 7 15%
Student > Ph. D. Student 7 15%
Student > Doctoral Student 2 4%
Student > Postgraduate 2 4%
Other 5 11%
Unknown 16 35%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 16 35%
Agricultural and Biological Sciences 7 15%
Chemistry 2 4%
Medicine and Dentistry 2 4%
Unspecified 1 2%
Other 4 9%
Unknown 14 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 October 2016.
All research outputs
#20,344,065
of 22,890,496 outputs
Outputs from BMC Microbiology
#2,695
of 3,197 outputs
Outputs of similar age
#276,850
of 319,894 outputs
Outputs of similar age from BMC Microbiology
#58
of 74 outputs
Altmetric has tracked 22,890,496 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,197 research outputs from this source. They receive a mean Attention Score of 4.1. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 319,894 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 74 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.