↓ Skip to main content

Drosophila

Overview of attention for book
Cover of 'Drosophila'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Using FlyBase, a Database of Drosophila Genes and Genomes.
  3. Altmetric Badge
    Chapter 2 The GAL4 System: A Versatile System for the Manipulation and Analysis of Gene Expression.
  4. Altmetric Badge
    Chapter 3 The Q-System: A Versatile Expression System for Drosophila.
  5. Altmetric Badge
    Chapter 4 Analysis of MicroRNA Function in Drosophila.
  6. Altmetric Badge
    Chapter 5 Methods for High-Throughput RNAi Screening in Drosophila Cells.
  7. Altmetric Badge
    Chapter 6 A Guide to Genome-Wide In Vivo RNAi Applications in Drosophila.
  8. Altmetric Badge
    Chapter 7 Creating Heritable Mutations in Drosophila with CRISPR-Cas9.
  9. Altmetric Badge
    Chapter 8 Performing Chromophore-Assisted Laser Inactivation in Drosophila Embryos Using GFP.
  10. Altmetric Badge
    Chapter 9 deGradFP: A System to Knockdown GFP-Tagged Proteins.
  11. Altmetric Badge
    Chapter 10 Drosophila
  12. Altmetric Badge
    Chapter 11 Cultivation and Live Imaging of Drosophila Imaginal Discs.
  13. Altmetric Badge
    Chapter 12 Cultivation and Live Imaging of Drosophila Ovaries.
  14. Altmetric Badge
    Chapter 13 Segmentation and Quantitative Analysis of Epithelial Tissues.
  15. Altmetric Badge
    Chapter 14 Laser Ablation to Probe the Epithelial Mechanics in Drosophila.
  16. Altmetric Badge
    Chapter 15 Rapid Ovary Mass-Isolation (ROMi) to Obtain Large Quantities of Drosophila Egg Chambers for Fluorescent In Situ Hybridization.
  17. Altmetric Badge
    Chapter 16 Drosophila
  18. Altmetric Badge
    Chapter 17 Protocols to Study Growth and Metabolism in Drosophila.
  19. Altmetric Badge
    Chapter 18 Protocols to Study Aging in Drosophila.
  20. Altmetric Badge
    Chapter 19 Protocols to Study Behavior in Drosophila.
  21. Altmetric Badge
    Chapter 20 Electrophysiological Recordings from Lobula Plate Tangential Cells in Drosophila.
  22. Altmetric Badge
    Chapter 21 Methods to Establish Drosophila Cell Lines.
  23. Altmetric Badge
    Chapter 22 Erratum to: The GAL4 System: A Versatile System for the Manipulation and Analysis of Gene Expression
Attention for Chapter 15: Rapid Ovary Mass-Isolation (ROMi) to Obtain Large Quantities of Drosophila Egg Chambers for Fluorescent In Situ Hybridization.
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 tweeter

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
5 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Rapid Ovary Mass-Isolation (ROMi) to Obtain Large Quantities of Drosophila Egg Chambers for Fluorescent In Situ Hybridization.
Chapter number 15
Book title
Drosophila
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-6371-3_15
Pubmed ID
Book ISBNs
978-1-4939-6369-0, 978-1-4939-6371-3
Authors

Helena Jambor, Pavel Mejstrik, Pavel Tomancak, Jambor, Helena, Mejstrik, Pavel, Tomancak, Pavel

Editors

Christian Dahmann

Abstract

Isolation of large quantities of tissue from organisms is essential for many techniques such as genome-wide screens and biochemistry. However, obtaining large quantities of tissues or cells is often the rate-limiting step when working in vivo. Here, we present a rapid method that allows the isolation of intact, single egg chambers at various developmental stages from ovaries of adult female Drosophila flies. The isolated egg chambers are amenable for a variety of procedures such as fluorescent in situ hybridization, RNA isolation, extract preparation, or immunostaining. Isolation of egg chambers from adult flies can be completed in 5 min and results, depending on the input amount of flies, in several milliliters of material. The isolated egg chambers are then further processed depending on the exact requirements of the subsequent application. We describe high-throughput in situ hybridization in 96-well plates as example application for the mass-isolated egg chambers.

Twitter Demographics

The data shown below were collected from the profile of 1 tweeter who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 5 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 5 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 2 40%
Researcher 1 20%
Student > Doctoral Student 1 20%
Student > Bachelor 1 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 3 60%
Biochemistry, Genetics and Molecular Biology 1 20%
Neuroscience 1 20%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 April 2020.
All research outputs
#12,736,112
of 16,033,714 outputs
Outputs from Methods in molecular biology
#4,772
of 9,312 outputs
Outputs of similar age
#193,808
of 272,342 outputs
Outputs of similar age from Methods in molecular biology
#5
of 8 outputs
Altmetric has tracked 16,033,714 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 9,312 research outputs from this source. They receive a mean Attention Score of 2.7. This one is in the 29th percentile – i.e., 29% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 272,342 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 8 others from the same source and published within six weeks on either side of this one. This one has scored higher than 3 of them.