↓ Skip to main content

Neuromuscular electrical stimulation for muscle weakness in adults with advanced disease

Overview of attention for article published in Cochrane database of systematic reviews, October 2016
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (93rd percentile)
  • High Attention Score compared to outputs of the same age and source (81st percentile)

Mentioned by

blogs
1 blog
twitter
45 tweeters

Citations

dimensions_citation
89 Dimensions

Readers on

mendeley
513 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Neuromuscular electrical stimulation for muscle weakness in adults with advanced disease
Published in
Cochrane database of systematic reviews, October 2016
DOI 10.1002/14651858.cd009419.pub3
Pubmed ID
Authors

Sarah Jones, William D-C Man, Wei Gao, Irene J Higginson, Andrew Wilcock, Matthew Maddocks

Abstract

This review is an update of a previously published review in the Cochrane Database of Systematic Reviews Issue 1, 2013 on Neuromuscular electrical stimulation for muscle weakness in adults with advanced disease.Patients with advanced progressive disease often experience muscle weakness, which can impact adversely on their ability to be independent and their quality of life. In those patients who are unable or unwilling to undertake whole-body exercise, neuromuscular electrical stimulation (NMES) may be an alternative treatment to enhance lower limb muscle strength. Programmes of NMES appear to be acceptable to patients and have led to improvements in muscle function, exercise capacity, and quality of life. However, estimates regarding the effectiveness of NMES based on individual studies lack power and precision. Primary objective: to evaluate the effectiveness of NMES on quadriceps muscle strength in adults with advanced disease. Secondary objectives: to examine the safety and acceptability of NMES, and its effect on peripheral muscle function (strength or endurance), muscle mass, exercise capacity, breathlessness, and health-related quality of life. We identified studies from searches of the Cochrane Central Register of Controlled Trials (CENTRAL), Cochrane Database of Systematic Reviews (CDSR), and Database of Abstracts of Reviews of Effects (DARE) (the Cochrane Library), MEDLINE (OVID), Embase (OVID), CINAHL (EBSCO), and PsycINFO (OVID) databases to January 2016; citation searches, conference proceedings, and previous systematic reviews. We included randomised controlled trials in adults with advanced chronic respiratory disease, chronic heart failure, cancer, or HIV/AIDS comparing a programme of NMES as a sole or adjunct intervention to no treatment, placebo NMES, or an active control. We imposed no language restriction. Two review authors independently extracted data on study design, participants, interventions, and outcomes. We assessed risk of bias using the Cochrane 'Risk of bias' tool. We calculated mean differences (MD) or standardised mean differences (SMD) between intervention and control groups for outcomes with sufficient data; for other outcomes we described findings from individual studies. We assessed the evidence using GRADE and created a 'Summary of findings' table. Eighteen studies (20 reports) involving a total of 933 participants with COPD, chronic respiratory disease, chronic heart failure, and/or thoracic cancer met the inclusion criteria for this update, an additional seven studies since the previous version of this review. All but one study that compared NMES to resistance training compared a programme of NMES to no treatment or placebo NMES. Most studies were conducted in a single centre and had a risk of bias arising from a lack of participant or assessor blinding and small study size. The quality of the evidence using GRADE comparing NMES to control was low for quadriceps muscle strength, moderate for occurrence of adverse events, and very low to low for all other secondary outcomes. We downgraded the quality of evidence ratings predominantly due to inconsistency among study findings and imprecision regarding estimates of effect. The included studies reported no serious adverse events and a low incidence of muscle soreness following NMES.NMES led to a statistically significant improvement in quadriceps muscle strength as compared to the control (12 studies; 781 participants; SMD 0.53, 95% confidence interval (CI) 0.19 to 0.87), equating to a difference of approximately 1.1 kg. An increase in muscle mass was also observed following NMES, though the observable effect appeared dependent on the assessment modality used (eight studies, 314 participants). Across tests of exercise performance, mean differences compared to control were statistically significant for the 6-minute walk test (seven studies; 317 participants; 35 m, 95% CI 14 to 56), but not for the incremental shuttle walk test (three studies; 434 participants; 9 m, 95% CI -35 to 52), endurance shuttle walk test (four studies; 452 participants; 64 m, 95% CI -18 to 146), or for cardiopulmonary exercise testing with cycle ergometry (six studies; 141 participants; 45 mL/minute, 95% CI -7 to 97). Limited data were available for other secondary outcomes, and we could not determine the most beneficial type of NMES programme. The overall conclusions have not changed from the last publication of this review, although we have included more data, new analyses, and an assessment of the quality of the evidence using the GRADE approach. NMES may be an effective treatment for muscle weakness in adults with advanced progressive disease, and could be considered as an exercise treatment for use within rehabilitation programmes. Further research is very likely to have an important impact on our confidence in the estimate of effect and may change the estimate. We recommend further research to understand the role of NMES as a component of, and in relation to, existing rehabilitation approaches. For example, studies may consider examining NMES as an adjuvant treatment to enhance the strengthening effect of programmes, or support patients with muscle weakness who have difficulty engaging with existing services.

Twitter Demographics

The data shown below were collected from the profiles of 45 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 513 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Netherlands 1 <1%
Brazil 1 <1%
United Kingdom 1 <1%
Canada 1 <1%
Spain 1 <1%
United States 1 <1%
Unknown 507 99%

Demographic breakdown

Readers by professional status Count As %
Student > Master 97 19%
Student > Bachelor 73 14%
Student > Ph. D. Student 58 11%
Researcher 53 10%
Student > Postgraduate 41 8%
Other 106 21%
Unknown 85 17%
Readers by discipline Count As %
Medicine and Dentistry 157 31%
Nursing and Health Professions 109 21%
Sports and Recreations 37 7%
Social Sciences 16 3%
Engineering 14 3%
Other 60 12%
Unknown 120 23%

Attention Score in Context

This research output has an Altmetric Attention Score of 35. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 January 2020.
All research outputs
#677,714
of 16,649,395 outputs
Outputs from Cochrane database of systematic reviews
#1,760
of 11,558 outputs
Outputs of similar age
#19,599
of 297,373 outputs
Outputs of similar age from Cochrane database of systematic reviews
#33
of 172 outputs
Altmetric has tracked 16,649,395 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 95th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 11,558 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 24.4. This one has done well, scoring higher than 84% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 297,373 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 93% of its contemporaries.
We're also able to compare this research output to 172 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 81% of its contemporaries.