↓ Skip to main content

Localization of human adipose-derived stem cells and their effect in repair of diabetic foot ulcers in rats

Overview of attention for article published in Stem Cell Research & Therapy, October 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
67 Dimensions

Readers on

mendeley
143 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Localization of human adipose-derived stem cells and their effect in repair of diabetic foot ulcers in rats
Published in
Stem Cell Research & Therapy, October 2016
DOI 10.1186/s13287-016-0412-2
Pubmed ID
Authors

Rongfeng Shi, Yinpeng Jin, Chuanwu Cao, Shilong Han, Xiaowen Shao, Lingyu Meng, Jie Cheng, Meiling Zhang, Jiayi Zheng, Jun Xu, Maoquan Li

Abstract

Diabetic foot ulcer (DFU) is an intractable diabetic complication. Patients suffering from diabetes mellitus (DM) frequently present with infected DFUs. In this study, a wound healing model on diabetic rat foot was established to mimic the pathophysiology of clinical patients who suffer from DFUs. Our study aimed to explore the localization of human adipose-derived stem cells (hADSCs) and the role of these cells in the repair of foot ulcerated tissue in diabetic rats, and thus to estimate the possibilities of adipose-derived stem cells for diabetic wound therapy. Sprague-Dawley rats were used to establish diabetic models by streptozotocin injection. A full-thickness foot dorsal skin wound was created by a 5 mm skin biopsy punch and a Westcott scissor. These rats were randomly divided into two groups: the hADSC-treated group and the phosphate-buffered saline (PBS) control group. The hADSC or PBS treatment was delivered through the left femoral vein of rats. We evaluated the localization of hADSCs with fluorescence immunohistochemistry and the ulcer area and ulcerative histology were detected dynamically. The hADSCs had a positive effect on the full-thickness foot dorsal skin wound in diabetic rats with a significantly reduced ulcer area at day 15. More granulation tissue formation, angiogenesis, cellular proliferation, and higher levels of growth factors expression were also detected in wound beds. Our data suggest that hADSC transplantation has the potential to promote foot wound healing in diabetic rats, and transplantation of exogenous stem cells may be suitable for clinical application in the treatment of DFU.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 143 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 143 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 29 20%
Student > Ph. D. Student 15 10%
Researcher 14 10%
Student > Master 9 6%
Student > Doctoral Student 8 6%
Other 23 16%
Unknown 45 31%
Readers by discipline Count As %
Medicine and Dentistry 47 33%
Nursing and Health Professions 15 10%
Biochemistry, Genetics and Molecular Biology 13 9%
Pharmacology, Toxicology and Pharmaceutical Science 8 6%
Engineering 4 3%
Other 9 6%
Unknown 47 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 October 2016.
All research outputs
#15,390,684
of 22,896,955 outputs
Outputs from Stem Cell Research & Therapy
#1,345
of 2,426 outputs
Outputs of similar age
#198,374
of 315,614 outputs
Outputs of similar age from Stem Cell Research & Therapy
#24
of 39 outputs
Altmetric has tracked 22,896,955 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,426 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.0. This one is in the 34th percentile – i.e., 34% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 315,614 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 39 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.