↓ Skip to main content

Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array

Overview of attention for article published in Nature Genetics, March 2013
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (99th percentile)
  • High Attention Score compared to outputs of the same age and source (94th percentile)

Mentioned by

15 news outlets
2 blogs
9 tweeters
2 patents
3 Facebook pages


389 Dimensions

Readers on

365 Mendeley
2 CiteULike
Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array
Published in
Nature Genetics, March 2013
DOI 10.1038/ng.2560
Pubmed ID

Rosalind A Eeles, Ali Amin Al Olama, Sara Benlloch, Edward J Saunders, Daniel A Leongamornlert, Malgorzata Tymrakiewicz, Maya Ghoussaini, Craig Luccarini, Joe Dennis, Sarah Jugurnauth-Little, Tokhir Dadaev, David E Neal, Freddie C Hamdy, Jenny L Donovan, Ken Muir, Graham G Giles, Gianluca Severi, Fredrik Wiklund, Henrik Gronberg, Christopher A Haiman, Fredrick Schumacher, Brian E Henderson, Loic Le Marchand, Sara Lindstrom, Peter Kraft, David J Hunter, Susan Gapstur, Stephen J Chanock, Sonja I Berndt, Demetrius Albanes, Gerald Andriole, Johanna Schleutker, Maren Weischer, Federico Canzian, Elio Riboli, Tim J Key, Ruth C Travis, Daniele Campa, Sue A Ingles, Esther M John, Richard B Hayes, Paul D P Pharoah, Nora Pashayan, Kay-Tee Khaw, Janet L Stanford, Elaine A Ostrander, Lisa B Signorello, Stephen N Thibodeau, Dan Schaid, Christiane Maier, Walther Vogel, Adam S Kibel, Cezary Cybulski, Jan Lubinski, Lisa Cannon-Albright, Hermann Brenner, Jong Y Park, Radka Kaneva, Jyotsna Batra, Amanda B Spurdle, Judith A Clements, Manuel R Teixeira, Ed Dicks, Andrew Lee, Alison M Dunning, Caroline Baynes, Don Conroy, Melanie J Maranian, Shahana Ahmed, Koveela Govindasami, Michelle Guy, Rosemary A Wilkinson, Emma J Sawyer, Angela Morgan, David P Dearnaley, Alan Horwich, Robert A Huddart, Vincent S Khoo, Christopher C Parker, Nicholas J Van As, Christopher J Woodhouse, Alan Thompson, Tim Dudderidge, Chris Ogden, Colin S Cooper, Artitaya Lophatananon, Angela Cox, Melissa C Southey, John L Hopper, Dallas R English, Markus Aly, Jan Adolfsson, Jiangfeng Xu, Siqun L Zheng, Meredith Yeager, Rudolf Kaaks, W Ryan Diver, Mia M Gaudet, Mariana C Stern, Roman Corral, Amit D Joshi, Ahva Shahabi, Tiina Wahlfors, Teuvo L J Tammela, Anssi Auvinen, Jarmo Virtamo, Peter Klarskov, Børge G Nordestgaard, M Andreas Røder, Sune F Nielsen, Stig E Bojesen, Afshan Siddiq, Liesel M FitzGerald, Suzanne Kolb, Erika M Kwon, Danielle M Karyadi, William J Blot, Wei Zheng, Qiuyin Cai, Shannon K McDonnell, Antje E Rinckleb, Bettina Drake, Graham Colditz, Dominika Wokolorczyk, Robert A Stephenson, Craig Teerlink, Heiko Muller, Dietrich Rothenbacher, Thomas A Sellers, Hui-Yi Lin, Chavdar Slavov, Vanio Mitev, Felicity Lose, Srilakshmi Srinivasan, Sofia Maia, Paula Paulo, Ethan Lange, Kathleen A Cooney, Antonis C Antoniou, Daniel Vincent, François Bacot, Daniel C Tessier, Zsofia Kote-Jarai, Douglas F Easton


Prostate cancer is the most frequently diagnosed cancer in males in developed countries. To identify common prostate cancer susceptibility alleles, we genotyped 211,155 SNPs on a custom Illumina array (iCOGS) in blood DNA from 25,074 prostate cancer cases and 24,272 controls from the international PRACTICAL Consortium. Twenty-three new prostate cancer susceptibility loci were identified at genome-wide significance (P < 5 × 10(-8)). More than 70 prostate cancer susceptibility loci, explaining ∼30% of the familial risk for this disease, have now been identified. On the basis of combined risks conferred by the new and previously known risk loci, the top 1% of the risk distribution has a 4.7-fold higher risk than the average of the population being profiled. These results will facilitate population risk stratification for clinical studies.

Twitter Demographics

The data shown below were collected from the profiles of 9 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 365 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 7 2%
United States 3 <1%
Canada 2 <1%
Denmark 2 <1%
Australia 1 <1%
Ireland 1 <1%
Italy 1 <1%
Korea, Republic of 1 <1%
Lithuania 1 <1%
Other 7 2%
Unknown 339 93%

Demographic breakdown

Readers by professional status Count As %
Researcher 85 23%
Student > Ph. D. Student 67 18%
Student > Master 38 10%
Other 37 10%
Professor 29 8%
Other 81 22%
Unknown 28 8%
Readers by discipline Count As %
Agricultural and Biological Sciences 103 28%
Medicine and Dentistry 85 23%
Biochemistry, Genetics and Molecular Biology 63 17%
Computer Science 20 5%
Engineering 4 1%
Other 42 12%
Unknown 48 13%

Attention Score in Context

This research output has an Altmetric Attention Score of 158. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 October 2019.
All research outputs
of 14,890,441 outputs
Outputs from Nature Genetics
of 6,371 outputs
Outputs of similar age
of 152,299 outputs
Outputs of similar age from Nature Genetics
of 72 outputs
Altmetric has tracked 14,890,441 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 99th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 6,371 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 33.4. This one has done particularly well, scoring higher than 95% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 152,299 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 99% of its contemporaries.
We're also able to compare this research output to 72 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 94% of its contemporaries.