↓ Skip to main content

Molecular mechanism of monodisperse colloidal tin-doped indium oxide nanocrystals by a hot-injection approach

Overview of attention for article published in Discover Nano, April 2013
Altmetric Badge

Mentioned by

facebook
1 Facebook page

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Molecular mechanism of monodisperse colloidal tin-doped indium oxide nanocrystals by a hot-injection approach
Published in
Discover Nano, April 2013
DOI 10.1186/1556-276x-8-153
Pubmed ID
Authors

Yizheng Jin, Qing Yi, Yuping Ren, Xin Wang, Zhizhen Ye

Abstract

Molecular mechanisms and precursor conversion pathways associated with the reactions that generate colloidal nanocrystals are crucial for the development of rational synthetic protocols. In this study, Fourier transform infrared spectroscopy technique was employed to explore the molecular mechanism associated with the formation of tin-doped indium oxide (ITO) nanocrystals. We found that the reaction pathways of the indium precursor were not consistent with simple ligand replacements proposed in the literature. The resulting understanding inspired us to design a hot-injection approach to separate the ligand replacements of indium acetate and the aminolysis processes, generating quality ITO nanocrystals with decent size distributions. The hot-injection approach was readily applied to the synthesis of ITO nanocrystals with a broad range of tin doping. Structural, chemical, and optical analyses revealed effective doping of Sn4+ ions into the host lattices, leading to characteristic and tunable near-infrared surface plasmon resonance peaks. The size control of ITO nanocrystals by multiple hot-injections of metal precursors was also demonstrated.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Canada 1 3%
Unknown 31 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 34%
Student > Bachelor 3 9%
Student > Master 3 9%
Other 2 6%
Professor 2 6%
Other 4 13%
Unknown 7 22%
Readers by discipline Count As %
Chemistry 11 34%
Materials Science 5 16%
Chemical Engineering 3 9%
Unspecified 2 6%
Environmental Science 1 3%
Other 4 13%
Unknown 6 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 April 2013.
All research outputs
#22,756,649
of 25,371,288 outputs
Outputs from Discover Nano
#798
of 1,146 outputs
Outputs of similar age
#186,687
of 212,753 outputs
Outputs of similar age from Discover Nano
#17
of 80 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,146 research outputs from this source. They receive a mean Attention Score of 3.5. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 212,753 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 80 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.