↓ Skip to main content

Cancer Gene Networks

Overview of attention for book
Cover of 'Cancer Gene Networks'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Introduction: Cancer Gene Networks.
  3. Altmetric Badge
    Chapter 2 Emerging Methods in Chemoproteomics with Relevance to Drug Discovery.
  4. Altmetric Badge
    Chapter 3 ANXA7-GTPase as Tumor Suppressor: Mechanisms and Therapeutic Opportunities.
  5. Altmetric Badge
    Chapter 4 Experimental and Study Design Considerations for Uncovering Oncometabolites.
  6. Altmetric Badge
    Chapter 5 Targeting Deubiquitinating Enzymes and Autophagy in Cancer.
  7. Altmetric Badge
    Chapter 6 Quantitative Clinical Imaging Methods for Monitoring Intratumoral Evolution.
  8. Altmetric Badge
    Chapter 7 Transcriptome and Proteome Analyses of TNFAIP8 Knockdown Cancer Cells Reveal New Insights into Molecular Determinants of Cell Survival and Tumor Progression.
  9. Altmetric Badge
    Chapter 8 Network-Oriented Approaches to Anticancer Drug Response.
  10. Altmetric Badge
    Chapter 9 CRISPR/Cas-Mediated Knockin in Human Pluripotent Stem Cells.
  11. Altmetric Badge
    Chapter 10 Complete Transcriptome RNA-Seq.
  12. Altmetric Badge
    Chapter 11 Computational Methods and Correlation of Exon-skipping Events with Splicing, Transcription, and Epigenetic Factors.
  13. Altmetric Badge
    Chapter 12 Tissue Engineering Platforms to Replicate the Tumor Microenvironment of Multiple Myeloma.
  14. Altmetric Badge
    Chapter 13 microRNA Target Prediction.
  15. Altmetric Badge
    Chapter 14 Evaluating the Delivery of Proteins to the Cytosol of Mammalian Cells.
  16. Altmetric Badge
    Chapter 15 Validation of Biomarker Proteins Using Reverse Capture Protein Microarrays.
  17. Altmetric Badge
    Chapter 16 Chemical Synthesis of Activity-Based Diubiquitin Probes.
  18. Altmetric Badge
    Chapter 17 Profiling the Dual Enzymatic Activities of the Serine/Threonine Kinase IRE1α.
Attention for Chapter 3: ANXA7-GTPase as Tumor Suppressor: Mechanisms and Therapeutic Opportunities.
Altmetric Badge

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
11 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
ANXA7-GTPase as Tumor Suppressor: Mechanisms and Therapeutic Opportunities.
Chapter number 3
Book title
Cancer Gene Networks
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-6539-7_3
Pubmed ID
Book ISBNs
978-1-4939-6537-3, 978-1-4939-6539-7
Authors

Ximena Leighton, Ofer Eidelman, Catherine Jozwik, Harvey B. Pollard, Meera Srivastava

Editors

Usha Kasid, Robert Clarke

Abstract

Chromosomal abnormalities, including homozygous deletions and loss of heterozygosity at 10q, are commonly observed in most human tumors, including prostate, breast, and kidney cancers. The ANXA7-GTPase is a tumor suppressor, which is frequently inactivated by genomic alterations at 10q21. In the last few years, considerable amounts of data have accumulated describing inactivation of ANXA7-GTPase in a variety of human malignancies and demonstrating the tumor suppressor potential of ANXA7-GTPase. ANXA7-GTPase contains a calcium binding domain that classifies it as a member of the annexin family. The cancer-specific expression of ANXA7-GTPase, coupled with its importance in regulating cell death, cell motility, and invasion, makes it a useful diagnostic marker of cancer and a potential target for cancer treatment. Recently, emerging evidence suggests that ANXA7-GTPase is a critical factor associated with the metastatic state of several cancers and can be used as a risk biomarker for HER2 negative breast cancer patients. Cross talk between ANXA7, PTEN, and EGFR leads to constitutive activation of PI3K-AKT signaling, a central pathway of tumor cell survival and proliferation. This review focuses on the recent progress in understanding the tumor suppressor functions of ANXA7-GTPase emphasizing the role of this gene in Ca(2+) metabolism, and exploring opportunities for function as an example of a calcium binding GTPase acting as a tumor suppressor and opportunities for ANXA7-GTPase gene cancer therapy.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 11 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 11 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 5 45%
Student > Bachelor 2 18%
Student > Doctoral Student 1 9%
Unspecified 1 9%
Student > Ph. D. Student 1 9%
Other 1 9%
Readers by discipline Count As %
Medicine and Dentistry 5 45%
Unspecified 1 9%
Agricultural and Biological Sciences 1 9%
Biochemistry, Genetics and Molecular Biology 1 9%
Immunology and Microbiology 1 9%
Other 1 9%
Unknown 1 9%