↓ Skip to main content

Cancer Gene Networks

Overview of attention for book
Cover of 'Cancer Gene Networks'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Introduction: Cancer Gene Networks.
  3. Altmetric Badge
    Chapter 2 Emerging Methods in Chemoproteomics with Relevance to Drug Discovery.
  4. Altmetric Badge
    Chapter 3 ANXA7-GTPase as Tumor Suppressor: Mechanisms and Therapeutic Opportunities.
  5. Altmetric Badge
    Chapter 4 Experimental and Study Design Considerations for Uncovering Oncometabolites.
  6. Altmetric Badge
    Chapter 5 Targeting Deubiquitinating Enzymes and Autophagy in Cancer.
  7. Altmetric Badge
    Chapter 6 Quantitative Clinical Imaging Methods for Monitoring Intratumoral Evolution.
  8. Altmetric Badge
    Chapter 7 Transcriptome and Proteome Analyses of TNFAIP8 Knockdown Cancer Cells Reveal New Insights into Molecular Determinants of Cell Survival and Tumor Progression.
  9. Altmetric Badge
    Chapter 8 Network-Oriented Approaches to Anticancer Drug Response.
  10. Altmetric Badge
    Chapter 9 CRISPR/Cas-Mediated Knockin in Human Pluripotent Stem Cells.
  11. Altmetric Badge
    Chapter 10 Complete Transcriptome RNA-Seq.
  12. Altmetric Badge
    Chapter 11 Computational Methods and Correlation of Exon-skipping Events with Splicing, Transcription, and Epigenetic Factors.
  13. Altmetric Badge
    Chapter 12 Tissue Engineering Platforms to Replicate the Tumor Microenvironment of Multiple Myeloma.
  14. Altmetric Badge
    Chapter 13 microRNA Target Prediction.
  15. Altmetric Badge
    Chapter 14 Evaluating the Delivery of Proteins to the Cytosol of Mammalian Cells.
  16. Altmetric Badge
    Chapter 15 Validation of Biomarker Proteins Using Reverse Capture Protein Microarrays.
  17. Altmetric Badge
    Chapter 16 Chemical Synthesis of Activity-Based Diubiquitin Probes.
  18. Altmetric Badge
    Chapter 17 Profiling the Dual Enzymatic Activities of the Serine/Threonine Kinase IRE1α.
Attention for Chapter 5: Targeting Deubiquitinating Enzymes and Autophagy in Cancer.
Altmetric Badge

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
12 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Targeting Deubiquitinating Enzymes and Autophagy in Cancer.
Chapter number 5
Book title
Cancer Gene Networks
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-6539-7_5
Pubmed ID
Book ISBNs
978-1-4939-6537-3, 978-1-4939-6539-7
Authors

Ashley Mooneyham, Martina Bazzaro

Editors

Usha Kasid, Robert Clarke

Abstract

Maintenance of proper cellular homeostasis requires constant surveillance and precise regulation of intracellular protein content. Protein monitoring and degradation is performed by two distinct pathways in a cell: the autophage-lysosome pathway and the ubiquitin-proteasome pathway. Protein degradation pathways are frequently dysregulated in multiple cancer types and can be both tumor suppressive and tumor promoting. This knowledge has presented the ubiquitin proteasome system (UPS) and autophagy as attractive cancer therapeutic targets. Deubiquitinating enzymes of the UPS have garnered recent attention in the field of cancer therapeutics due to their frequent dysregulation in multiple cancer types. The content of this chapter discusses reasoning behind and advances toward targeting autophagy and the deubiquitinating enzymes of the UPS in cancer therapy, as well as the compelling evidence suggesting that simultaneous targeting of these protein degradation systems may deliver the most effective, synergistic strategy to kill cancer cells.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 25%
Student > Master 2 17%
Researcher 1 8%
Professor > Associate Professor 1 8%
Unknown 5 42%
Readers by discipline Count As %
Agricultural and Biological Sciences 3 25%
Biochemistry, Genetics and Molecular Biology 2 17%
Medicine and Dentistry 1 8%
Unknown 6 50%