↓ Skip to main content

DNA Methyltransferases - Role and Function

Overview of attention for book
Cover of 'DNA Methyltransferases - Role and Function'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Mechanisms and Biological Roles of DNA Methyltransferases and DNA Methylation: From Past Achievements to Future Challenges.
  3. Altmetric Badge
    Chapter 2 DNA and RNA Pyrimidine Nucleobase Alkylation at the Carbon-5 Position.
  4. Altmetric Badge
    Chapter 3 Bacterial DNA Methylation and Methylomes.
  5. Altmetric Badge
    Chapter 4 Domain Structure of the Dnmt1, Dnmt3a, and Dnmt3b DNA Methyltransferases.
  6. Altmetric Badge
    Chapter 5 Enzymology of Mammalian DNA Methyltransferases.
  7. Altmetric Badge
    Chapter 6 Genetic Studies on Mammalian DNA Methyltransferases.
  8. Altmetric Badge
    Chapter 7 The Role of DNA Methylation in Cancer.
  9. Altmetric Badge
    Chapter 8 DNA Methyltransferases - Role and Function
  10. Altmetric Badge
    Chapter 9 DNA Methyltransferases - Role and Function
  11. Altmetric Badge
    Chapter 10 N6-Methyladenine: A Conserved and Dynamic DNA Mark.
  12. Altmetric Badge
    Chapter 11 Pathways of DNA Demethylation.
  13. Altmetric Badge
    Chapter 12 Structure and Function of TET Enzymes.
  14. Altmetric Badge
    Chapter 13 Proteins That Read DNA Methylation.
  15. Altmetric Badge
    Chapter 14 DNA Methyltransferases - Role and Function
  16. Altmetric Badge
    Chapter 15 DNA Methyltransferases - Role and Function
  17. Altmetric Badge
    Chapter 16 DNA Methyltransferase Inhibitors: Development and Applications.
  18. Altmetric Badge
    Chapter 17 DNA Methyltransferases - Role and Function
  19. Altmetric Badge
    Chapter 18 Engineering and Directed Evolution of DNA Methyltransferases.
  20. Altmetric Badge
    Chapter 19 DNA Labeling Using DNA Methyltransferases.
Attention for Chapter 17: DNA Methyltransferases - Role and Function
Altmetric Badge

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
9 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
DNA Methyltransferases - Role and Function
Chapter number 17
Book title
DNA Methyltransferases - Role and Function
Published in
Advances in experimental medicine and biology, November 2016
DOI 10.1007/978-3-319-43624-1_17
Pubmed ID
Book ISBNs
978-3-31-943622-7, 978-3-31-943624-1
Authors

Stolzenburg, Sabine, Goubert, Désirée, Rots, Marianne G, Sabine Stolzenburg, Désirée Goubert, Marianne G. Rots, Rots, Marianne G.

Editors

Albert Jeltsch, Renata Z. Jurkowska

Abstract

Epigenetic regulation of gene expression is vital for the maintenance of genome integrity and cell phenotype. In addition, many different diseases have underlying epigenetic mutations, and understanding their role and function may unravel new insights for diagnosis, treatment, and even prevention of diseases. It was an important breakthrough when epigenetic alterations could be gene-specifically manipulated using epigenetic regulatory proteins in an approach termed epigenetic editing. Epigenetic editors can be designed for virtually any gene by targeting effector domains to a preferred sequence, where they write or erase the desired epigenetic modification. This chapter describes the tools for editing DNA methylation signatures and their applications. In addition, we explain how to achieve targeted DNA (de)methylation and discuss the advantages and disadvantages of this approach. Silencing genes directly at the DNA methylation level instead of targeting the protein and/or RNA is a major improvement, as repression is achieved at the source of expression, potentially eliminating the need for continuous administration. Re-expression of silenced genes by targeted demethylation might closely represent the natural situation, in which all transcript variants might be expressed in a sustainable manner. Altogether epigenetic editing, for example, by rewriting DNA methylation, will assist in realizing the curable genome concept.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 2 22%
Other 1 11%
Professor 1 11%
Student > Bachelor 1 11%
Student > Ph. D. Student 1 11%
Other 1 11%
Unknown 2 22%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 2 22%
Medicine and Dentistry 2 22%
Agricultural and Biological Sciences 2 22%
Nursing and Health Professions 1 11%
Unknown 2 22%