↓ Skip to main content

DNA Methyltransferases - Role and Function

Overview of attention for book
Cover of 'DNA Methyltransferases - Role and Function'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Mechanisms and Biological Roles of DNA Methyltransferases and DNA Methylation: From Past Achievements to Future Challenges.
  3. Altmetric Badge
    Chapter 2 DNA and RNA Pyrimidine Nucleobase Alkylation at the Carbon-5 Position.
  4. Altmetric Badge
    Chapter 3 Bacterial DNA Methylation and Methylomes.
  5. Altmetric Badge
    Chapter 4 Domain Structure of the Dnmt1, Dnmt3a, and Dnmt3b DNA Methyltransferases.
  6. Altmetric Badge
    Chapter 5 Enzymology of Mammalian DNA Methyltransferases.
  7. Altmetric Badge
    Chapter 6 Genetic Studies on Mammalian DNA Methyltransferases.
  8. Altmetric Badge
    Chapter 7 The Role of DNA Methylation in Cancer.
  9. Altmetric Badge
    Chapter 8 DNA Methyltransferases - Role and Function
  10. Altmetric Badge
    Chapter 9 DNA Methyltransferases - Role and Function
  11. Altmetric Badge
    Chapter 10 N6-Methyladenine: A Conserved and Dynamic DNA Mark.
  12. Altmetric Badge
    Chapter 11 Pathways of DNA Demethylation.
  13. Altmetric Badge
    Chapter 12 Structure and Function of TET Enzymes.
  14. Altmetric Badge
    Chapter 13 Proteins That Read DNA Methylation.
  15. Altmetric Badge
    Chapter 14 DNA Methyltransferases - Role and Function
  16. Altmetric Badge
    Chapter 15 DNA Methyltransferases - Role and Function
  17. Altmetric Badge
    Chapter 16 DNA Methyltransferase Inhibitors: Development and Applications.
  18. Altmetric Badge
    Chapter 17 DNA Methyltransferases - Role and Function
  19. Altmetric Badge
    Chapter 18 Engineering and Directed Evolution of DNA Methyltransferases.
  20. Altmetric Badge
    Chapter 19 DNA Labeling Using DNA Methyltransferases.
Attention for Chapter 10: N6-Methyladenine: A Conserved and Dynamic DNA Mark.
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (58th percentile)

Mentioned by

wikipedia
1 Wikipedia page

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
97 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
N6-Methyladenine: A Conserved and Dynamic DNA Mark.
Chapter number 10
Book title
DNA Methyltransferases - Role and Function
Published in
Advances in experimental medicine and biology, November 2016
DOI 10.1007/978-3-319-43624-1_10
Pubmed ID
Book ISBNs
978-3-31-943622-7, 978-3-31-943624-1
Authors

Zach Klapholz O’Brown, Eric Lieberman Greer, O’Brown, Zach Klapholz, Greer, Eric Lieberman

Editors

Albert Jeltsch, Renata Z. Jurkowska

Abstract

Chromatin, consisting of deoxyribonucleic acid (DNA) wrapped around histone proteins, facilitates DNA compaction and allows identical DNA codes to confer many different cellular phenotypes. This biological versatility is accomplished in large part by posttranslational modifications to histones and chemical modifications to DNA. These modifications direct the cellular machinery to expand or compact specific chromatin regions and mark regions of the DNA as important for cellular functions. While each of the four bases that make up DNA can be modified (Iyer et al. 2011), this chapter will focus on methylation of the sixth position on adenines (6mA), as this modification has been poorly characterized in recently evolved eukaryotes, but shows promise as a new conserved layer of epigenetic regulation. 6mA was previously thought to be restricted to unicellular organisms, but recent work has revealed its presence in metazoa. Here, we will briefly describe the history of 6mA, examine its evolutionary conservation, and evaluate the current methods for detecting 6mA. We will discuss the enzymes that bind and regulate this mark and finally examine known and potential functions of 6mA in eukaryotes.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 97 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 97 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 15 15%
Student > Master 13 13%
Student > Ph. D. Student 12 12%
Student > Bachelor 11 11%
Student > Doctoral Student 7 7%
Other 8 8%
Unknown 31 32%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 42 43%
Agricultural and Biological Sciences 12 12%
Chemistry 4 4%
Neuroscience 3 3%
Immunology and Microbiology 1 1%
Other 3 3%
Unknown 32 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 April 2024.
All research outputs
#8,648,602
of 25,658,139 outputs
Outputs from Advances in experimental medicine and biology
#1,382
of 5,268 outputs
Outputs of similar age
#119,700
of 319,901 outputs
Outputs of similar age from Advances in experimental medicine and biology
#26
of 84 outputs
Altmetric has tracked 25,658,139 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,268 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.0. This one has gotten more attention than average, scoring higher than 64% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 319,901 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 84 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 58% of its contemporaries.